Download presentation
Presentation is loading. Please wait.
1
paul.sava@beg.utexas.edu Wave-equation common-angle gathers for converted waves Paul Sava & Sergey Fomel Bureau of Economic Geology University of Texas at Austin
2
paul.sava@beg.utexas.edu Imaging condition Image Source wavefield Receiver wavefield Wavefield reconstruction Imaging sketch S R Angle decomposition Angle-dependent reflectivity
3
paul.sava@beg.utexas.edu Wavefield reconstruction Source wavefield Receiver wavefield S R
4
paul.sava@beg.utexas.edu Imaging condition Rickett & Sava (2002) Biondi & Symes (2004) Sava & Fomel (2005) Claerbout (1985) Space shift: h={h x,h y,h z } Location: m={x,y,z}
5
paul.sava@beg.utexas.edu Angle decomposition Reflection angle Azimuth angle Space shift: h={h x,h y,h z } Location: m={x,y,z} Message: images obtained by space-shift imaging contain sufficient information for converted-wave angle decomposition!
6
paul.sava@beg.utexas.edu Angle decomposition
7
paul.sava@beg.utexas.edu PP reflection geometry psps prpr 2p m 2p h
8
paul.sava@beg.utexas.edu PS reflection geometry psps prpr 2p h 2p m
9
paul.sava@beg.utexas.edu PS reflection geometry psps prpr 2p h 2p m
10
paul.sava@beg.utexas.edu PS reflection geometry 3 relations, can eliminate 2 variables:
11
paul.sava@beg.utexas.edu PS transformation Example: eliminate and. 3 relations, can eliminate 2 variables. Sava & Fomel (2005)
12
paul.sava@beg.utexas.edu PS transformation (2D) Example: eliminate and. 3 relations, can eliminate 2 variables. Weglein & Stolt (1985) Sava & Fomel (2003)
13
paul.sava@beg.utexas.edu Angle decomposition algorithm
14
paul.sava@beg.utexas.edu Example 1 0 15 3045 distance depth v P =2 km/s v S =1 km/s
15
paul.sava@beg.utexas.edu PP dataPS data surface offset time surface offset time 0 15 30 45
16
paul.sava@beg.utexas.edu PP image distance depth 0 15 3045
17
paul.sava@beg.utexas.edu PS image distance depth 0 15 3045
18
paul.sava@beg.utexas.edu PP offset-gatherPS offset-gather space-shift depth space-shift depth
19
paul.sava@beg.utexas.edu PP angle-gatherPS angle-gather tan( 0 ) depth tan( 0 ) depth 01530450153045 PP transformation
20
paul.sava@beg.utexas.edu PP angle-gatherPS angle-gather depth 01530450153045 PS transformation tan( 0 )tan( )
21
paul.sava@beg.utexas.edu Example 2 distance depth acquisition shots: 51 at 0.2km receivers: 401 at 0.025km Modified from Baina et al. (2005):
22
paul.sava@beg.utexas.edu PP dataPS data surface offset time surface offset time
23
paul.sava@beg.utexas.edu PP imagePS image distance depth distance depth Uneven amplitude
24
paul.sava@beg.utexas.edu PP offset-gathersPS offset-gathers depth space-shift
25
paul.sava@beg.utexas.edu PP angle-gathersPS angle-gathers depth angle
26
paul.sava@beg.utexas.edu PP angle-gatherPS angle-gather angle depth angle depth PP transformation
27
paul.sava@beg.utexas.edu PP angle-gatherPS angle-gather angle depth angle depth PS transformation
28
paul.sava@beg.utexas.edu PP angle-gathersPS angle-gathers depth angle Normal polarity
29
paul.sava@beg.utexas.edu PP angle-gathersPS angle-gathers depth angle Reversed polarity
30
paul.sava@beg.utexas.edu PP stackPS stack distance depth distance depth
31
paul.sava@beg.utexas.edu Conclusions Angle decomposition for converted-waves Space-shift imaging condition –Independent of extrapolation method –Contains all required information Real challenge: what are the velocity models?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.