Download presentation
Presentation is loading. Please wait.
1
Principles of Immunology B Cell Development 3/16/06 “Hard work has a future payoff but laziness pays off now.” Anonymous
2
Word/Terms List Class switching Clonal deletion Naïve B cells Stromal cells TD antigens TI antigens
3
B Cell Development Maturation-Stem cells to mature, naïve B cells Activation-Ag binding; initiation of cell changes Differentiation-Cell division and changes into effector B cells (plasma cells) and memory B cells
4
Lymphopoiesis Occurs in yolk sac, fetal liver then bone marrow throughout rest of life Mature, naïve B cells released into circulation B cell production occurs throughout life; does not wane as does T cell production About 5 million produced per day Only 10% of B cells mature Naïve B cells survive about one week Undergo negative selection
5
B Cell Maturation Hematopoietic stem cells(HSC) Lymphoid stem cell (progenitor) B cell progenitor (pro-B cell) Pre-B cell Immature B cell Mature, naïve B cell
8
B Cell Changes Pro B cells Rearrangement of Ig heavy chain genes (D to J joining followed by V to DJ) Not all rearrangements result in complete mu variable region sequences Expression of CD45R and CD19 Further maturation is dependent on direct interaction with BM stromal cells c-Kit on pro B is activated by SCF on stromal cells
10
B Cell Changes Pre B cells Cell division occurs Rearrangement of Ig light chain genes (V to J joining) Expression of IL7 receptor Expression of mu heavy chains in association with Ig alpha-Ig beta heterodimer Pre B cell receptor uses surrogate light chains Shuts down further Ig gene rearrangement
12
B Cell Changes Immature B cells IgM expressed on surface B cell receptor appears Cells interact with self Ags Negative selection (clonal deletion) occurs
13
B Cell Changes Mature B cells Migrate out of bone marrow Both IgM and IgD expressed on surface Cell division occurs Rearrangement of Ig light chain genes (V to J joining) Expression of IL7 receptor Expression of mu heavy chains in association with Ig alpha-Ig beta heterodimer Pre B cell receptor uses surrogate light chains Shuts down further Ig gene rearrangement
14
B Cell Activation Triggered by combining with Ag Two types of Ags that activate B cells Thymus dependent Ag e.g. soluble proteins Thymus independent Ag Type 1, e.g. LPS Type 2, e.g. capsular polysaccharides The reaction to thymus independent antigens is not as strong, memory cells are not produced and class switching does not occur
15
B Cell Activation Activation signals Two signals required In TI Ags both signals occur post antigen binding without T helper cells In TD Ags, Ag binding provides one signal and CD40/CD40L ligand on T helper cell provides the second
17
B Cell Activation Signaling pathways Similar to T cell signaling Protein tyrosine kinase (Src) Phosphorylated tyrosines on ITAMS dock the Syk kinase Ultimate effects are on gene expression Co receptor Three protein complex Provides signals that modify B cell
19
B Cell/T Cell Interaction B cells as Ag binding and Ag presenting cells B cells are able to react to lower concentrations of Ag Co-stimulation with CD40/CD40L Role of interleukins (IL2,4,5)
21
B Cell Subsets B1 CD5 marker More responsive to CHO Ags Seen in peritoneum B2 Most B cells (95%) Drive the Ag response in secondary lymphoid organs
22
Humoral Response Effector cells and memory cells Naïve B cells vs. memory cells, primary vs. secondary response
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.