Presentation is loading. Please wait.

Presentation is loading. Please wait.

指導老師:林燦煌 博士 學生 : 劉芳怡 A problem generator-solver heuristic for vehicle routing with soft time windows.

Similar presentations


Presentation on theme: "指導老師:林燦煌 博士 學生 : 劉芳怡 A problem generator-solver heuristic for vehicle routing with soft time windows."— Presentation transcript:

1 指導老師:林燦煌 博士 學生 : 劉芳怡 A problem generator-solver heuristic for vehicle routing with soft time windows

2 目的 考慮軟性時間窗的車輛排程問題 特別重要的是允許決策者 (decision- makers) 從 logistics and marketing-sales 兩 邊,藉由適當的 contract negotiations 在客 戶訂單的運送時間上,來決定最小的車 隊 size 。 結合 nearest-neighbor 與 problem generator

3 Problem formulation 設定兩種群組的變數。 第一 :the sequence in which vehicles visit customers

4 第二 : 當 vehicle k 開始 active 就設為 1 ,且 至少要拜訪一個客戶。

5 (Penalty function) 1.c ei 、 c li is the unit penalty 。 2. 每一客戶 i 的開始 服務時間。

6 impose a maximum limit wt max on the waiting time of a vehicle at any customer, to contain possible high levels of waiting times before customer service begins 1.a j : customer j 開始服務時間。 2.a i :customer i 開始服務時間。 3.s i :service time 4.t ij :travel time :if customer j follows customer i in the sequence visited by vehicle k

7 十 Overall objective function for the VRPSTW include three components: route cost, vehicle activation cost and time window violation cost. tc ij :customer i to customer j 的距離乘上 travel time t ij 。 :if customer j follows customer i in the sequence visited by vehicle k 。 w k : 車輛 k 活動的成本。 z k :if vehicle k is active 。 Pi:customer i time window violation cost 。

8 The effect of time window violations can be expressed in terms of the total average time window deviation per customer The measure of (6) is critical since it provides an indication of the size of the time window violations.

9 Solution method 利用 a problem instance and a solution engine ,來解 VRPSTW 問題。 Problem generator-- 重複產生軟性時間窗 的案例,產生不同客戶數的軟性時間窗 案例及可允許的最大時間窗違反。 Solution engine-- 利用 nearest-neighbor heuristic(NNH) 結合 penalty function ,來當 作客戶選擇的標準。

10 The instance generator engine the generator selects customer i that has the minimum violation,which is less than a tightness coefficient ε. the generator engine allows violations for the first┌ nλ/100 ┐customers and selects customer j, which satisfies the property below, for time window fixing:

11 The solution engine 在選擇 customer j 時有一個最低成本 C j 。 The cost C j can be mathematically expressed as: b d,b a,b u,b p 是權重,定義為所有選擇標準在每一 metric 的相關貢獻度。 b d +b a +b u +b p =1 b d, b a,b u, b p ≧ 0. NNH 在 implementation 時,使用各種 b d,b a,b u,b p 值下去實驗。

12 define the last three sub-metrics of (8) as follows: 顧客 j 可被服務的最晚 時間

13 The heuristic Algorithm PGSH(problem generator solver heuristic)

14

15 使用一個參數 γ 來增 加 λ 值

16 Computational results Three metrics for each data set are reported: (a) the number of vehicles reached by PGSH (problem generator solver heuristic) (b) the percentage of non-violated time windows (TW) for each vehicle fleet size (c) the total average violation of time windows for each vehicle fleet size(TATWD).

17 7% 的時間窗違 反只要 16 輛車。 最佳解的 17 輛車是 沒有時間 窗違反。

18

19

20 車輛數 沒有違反時間 窗的百分比 從後面五個客戶看來 PGSH 有明顯的達到 最佳解,且沒有違反時間窗。

21

22 ε The percentage of non- violated time windows 72 55 圖上橫座標 55 、 72 分別是文獻中 Balakrishnan 在 16 、 17vehicles 的 最好解 如果不管 ε 值,可以觀察到 PGSH 的解優於 Balakrishnan PGSH Balakrishnan

23 Original heuristic of Baker and Scaffer for hard case = 客戶需求總合 / 車的容量

24 結論 本篇方法解的 engine ,是建立在 nearest- neighbor heuristic ,適當的應用在當時間 窗違反 (time window violations) 時,會有 一個懲罰值 (penalty) 。 這特別是為了 fleet planning and contract negotiations ,因為他可以允許決策者做 出最好的權衡在時間窗擴張和車輛數之 間。


Download ppt "指導老師:林燦煌 博士 學生 : 劉芳怡 A problem generator-solver heuristic for vehicle routing with soft time windows."

Similar presentations


Ads by Google