Download presentation
Presentation is loading. Please wait.
1
Chapter Five Choice
2
Economic Rationality u The principal behavioral postulate is that a decisionmaker chooses its most preferred alternative from those available to it. u The available choices constitute the choice set. u How is the most preferred bundle in the choice set located?
3
Rational Constrained Choice x1x1 x2x2
4
x1x1 x2x2 Affordable bundles More preferred bundles
5
Rational Constrained Choice Affordable bundles x1x1 x2x2 More preferred bundles
6
Rational Constrained Choice x1x1 x2x2 x1*x1* x2*x2* (x 1 *,x 2 *) is the most preferred affordable bundle.
7
Rational Constrained Choice u The most preferred affordable bundle is called the consumer’s ORDINARY DEMAND at the given prices and budget. u Ordinary demands will be denoted by x 1 *(p 1,p 2,m) and x 2 *(p 1,p 2,m).
8
Rational Constrained Choice u When x 1 * > 0 and x 2 * > 0 the demanded bundle is INTERIOR. u If buying (x 1 *,x 2 *) costs $m then the budget is exhausted.
9
Rational Constrained Choice x1x1 x2x2 x1*x1* x2*x2* (x 1 *,x 2 *) is interior. (a) (x 1 *,x 2 *) exhausts the budget; p 1 x 1 * + p 2 x 2 * = m.
10
Rational Constrained Choice x1x1 x2x2 x1*x1* x2*x2* (x 1 *,x 2 *) is interior. (b) The slope of the indiff. curve at (x 1 *,x 2 *) equals the slope of the budget constraint.
11
Computing Ordinary Demands u How can this information be used to locate (x 1 *,x 2 *) for given p 1, p 2 and m?
12
Computing Ordinary Demands - a Cobb-Douglas Example. u Suppose that the consumer has Cobb-Douglas preferences.
13
Computing Ordinary Demands - a Cobb-Douglas Example. u Suppose that the consumer has Cobb-Douglas preferences. u Then
14
Computing Ordinary Demands - a Cobb-Douglas Example. u So the MRS is
15
Computing Ordinary Demands - a Cobb-Douglas Example. u So the MRS is u At (x 1 *,x 2 *), MRS = -p 1 /p 2 so
16
Computing Ordinary Demands - a Cobb-Douglas Example. u So the MRS is u At (x 1 *,x 2 *), MRS = -p 1 /p 2 so (A)
17
Computing Ordinary Demands - a Cobb-Douglas Example. u (x 1 *,x 2 *) also exhausts the budget so (B)
18
Computing Ordinary Demands - a Cobb-Douglas Example. u So now we know that (A) (B)
19
Computing Ordinary Demands - a Cobb-Douglas Example. u So now we know that (A) (B) Substitute
20
Computing Ordinary Demands - a Cobb-Douglas Example. u So now we know that (A) (B) Substitute and get This simplifies to ….
21
Computing Ordinary Demands - a Cobb-Douglas Example.
22
Substituting for x 1 * in then gives
23
Computing Ordinary Demands - a Cobb-Douglas Example. So we have discovered that the most preferred affordable bundle for a consumer with Cobb-Douglas preferences is
24
Computing Ordinary Demands - a Cobb-Douglas Example. x1x1 x2x2
25
Rational Constrained Choice u When x 1 * > 0 and x 2 * > 0 and (x 1 *,x 2 *) exhausts the budget, and indifference curves have no ‘kinks’, the ordinary demands are obtained by solving: u (a) p 1 x 1 * + p 2 x 2 * = y u (b) the slopes of the budget constraint, -p 1 /p 2, and of the indifference curve containing (x 1 *,x 2 *) are equal at (x 1 *,x 2 *).
26
Rational Constrained Choice u But what if x 1 * = 0? u Or if x 2 * = 0? u If either x 1 * = 0 or x 2 * = 0 then the ordinary demand (x 1 *,x 2 *) is at a corner solution to the problem of maximizing utility subject to a budget constraint.
27
Examples of Corner Solutions -- the Perfect Substitutes Case x1x1 x2x2 MRS = -1
28
Examples of Corner Solutions -- the Perfect Substitutes Case x1x1 x2x2 MRS = -1 Slope = -p 1 /p 2 with p 1 > p 2.
29
Examples of Corner Solutions -- the Perfect Substitutes Case x1x1 x2x2 MRS = -1 Slope = -p 1 /p 2 with p 1 > p 2.
30
Examples of Corner Solutions -- the Perfect Substitutes Case x1x1 x2x2 MRS = -1 Slope = -p 1 /p 2 with p 1 > p 2.
31
Examples of Corner Solutions -- the Perfect Substitutes Case x1x1 x2x2 MRS = -1 Slope = -p 1 /p 2 with p 1 < p 2.
32
Examples of Corner Solutions -- the Perfect Substitutes Case So when U(x 1,x 2 ) = x 1 + x 2, the most preferred affordable bundle is (x 1 *,x 2 *) where and if p 1 < p 2 if p 1 > p 2.
33
Examples of Corner Solutions -- the Perfect Substitutes Case x1x1 x2x2 MRS = -1 Slope = -p 1 /p 2 with p 1 = p 2.
34
Examples of Corner Solutions -- the Perfect Substitutes Case x1x1 x2x2 All the bundles in the constraint are equally the most preferred affordable when p 1 = p 2.
35
Examples of ‘Kinky’ Solutions -- the Perfect Complements Case x1x1 x2x2 U(x 1,x 2 ) = min{ax 1,x 2 } x 2 = ax 1
36
Examples of ‘Kinky’ Solutions -- the Perfect Complements Case x1x1 x2x2 MRS = 0 U(x 1,x 2 ) = min{ax 1,x 2 } x 2 = ax 1
37
Examples of ‘Kinky’ Solutions -- the Perfect Complements Case x1x1 x2x2 MRS = - MRS = 0 U(x 1,x 2 ) = min{ax 1,x 2 } x 2 = ax 1
38
Examples of ‘Kinky’ Solutions -- the Perfect Complements Case x1x1 x2x2 MRS = - MRS = 0 MRS is undefined U(x 1,x 2 ) = min{ax 1,x 2 } x 2 = ax 1
39
Examples of ‘Kinky’ Solutions -- the Perfect Complements Case x1x1 x2x2 U(x 1,x 2 ) = min{ax 1,x 2 } x 2 = ax 1
40
Examples of ‘Kinky’ Solutions -- the Perfect Complements Case x1x1 x2x2 U(x 1,x 2 ) = min{ax 1,x 2 } x 2 = ax 1 Which is the most preferred affordable bundle?
41
Examples of ‘Kinky’ Solutions -- the Perfect Complements Case x1x1 x2x2 U(x 1,x 2 ) = min{ax 1,x 2 } x 2 = ax 1 The most preferred affordable bundle
42
Examples of ‘Kinky’ Solutions -- the Perfect Complements Case x1x1 x2x2 U(x 1,x 2 ) = min{ax 1,x 2 } x 2 = ax 1 x1*x1* x2*x2*
43
Examples of ‘Kinky’ Solutions -- the Perfect Complements Case x1x1 x2x2 U(x 1,x 2 ) = min{ax 1,x 2 } x 2 = ax 1 x1*x1* x2*x2* (a) p 1 x 1 * + p 2 x 2 * = m
44
Examples of ‘Kinky’ Solutions -- the Perfect Complements Case x1x1 x2x2 U(x 1,x 2 ) = min{ax 1,x 2 } x 2 = ax 1 x1*x1* x2*x2* (a) p 1 x 1 * + p 2 x 2 * = m (b) x 2 * = ax 1 *
45
Examples of ‘Kinky’ Solutions -- the Perfect Complements Case (a) p 1 x 1 * + p 2 x 2 * = m; (b) x 2 * = ax 1 *.
46
Examples of ‘Kinky’ Solutions -- the Perfect Complements Case (a) p 1 x 1 * + p 2 x 2 * = m; (b) x 2 * = ax 1 *. Substitution from (b) for x 2 * in (a) gives p 1 x 1 * + p 2 ax 1 * = m
47
Examples of ‘Kinky’ Solutions -- the Perfect Complements Case (a) p 1 x 1 * + p 2 x 2 * = m; (b) x 2 * = ax 1 *. Substitution from (b) for x 2 * in (a) gives p 1 x 1 * + p 2 ax 1 * = m which gives
48
Examples of ‘Kinky’ Solutions -- the Perfect Complements Case (a) p 1 x 1 * + p 2 x 2 * = m; (b) x 2 * = ax 1 *. Substitution from (b) for x 2 * in (a) gives p 1 x 1 * + p 2 ax 1 * = m which gives
49
Examples of ‘Kinky’ Solutions -- the Perfect Complements Case (a) p 1 x 1 * + p 2 x 2 * = m; (b) x 2 * = ax 1 *. Substitution from (b) for x 2 * in (a) gives p 1 x 1 * + p 2 ax 1 * = m which gives A bundle of 1 commodity 1 unit and a commodity 2 units costs p 1 + ap 2 ; m/(p 1 + ap 2 ) such bundles are affordable.
50
Examples of ‘Kinky’ Solutions -- the Perfect Complements Case x1x1 x2x2 U(x 1,x 2 ) = min{ax 1,x 2 } x 2 = ax 1
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.