Download presentation
Presentation is loading. Please wait.
1
Lecture 3 - 1 ERS 482/682 (Fall 2002) Information sources ERS 482/682 Small Watershed Hydrology
2
Lecture 3 - 2 ERS 482/682 (Fall 2002) Issues Model errors –Assumptions –Function Water balance
3
Lecture 3 - 3 ERS 482/682 (Fall 2002) Issues Model errors Measurement errors Figure 2 (Sullivan et al. 1996)
4
Lecture 3 - 4 ERS 482/682 (Fall 2002) Issues Model errors Measurement errors Spatial variability Temporal variability Figure 2 (Sullivan et al. 1996)
5
Lecture 3 - 5 ERS 482/682 (Fall 2002) Model errors Check and be aware of assumptions Calibration Validation Verification
6
Lecture 3 - 6 ERS 482/682 (Fall 2002) Measurement errors Estimate the error –Instrument error –Data error Standard deviation of normal distribution 95% probability that an error will be between ±1.96 SD of the true value
7
Lecture 3 - 7 ERS 482/682 (Fall 2002) frequency
8
Lecture 3 - 8 ERS 482/682 (Fall 2002) RELATIVE frequency
9
Lecture 3 - 9 ERS 482/682 (Fall 2002) Normal distribution Kurtosis: flat vs. peaked standard deviation mean particular error
10
Lecture 3 - 10 ERS 482/682 (Fall 2002) Descriptive statistics Mean, For errors, we hope this is 0!
11
Lecture 3 - 11 ERS 482/682 (Fall 2002) Measures of central tendency Mean Center of gravity Median Half the x-values are smaller and half are larger Mode Value of x with the largest frequency
12
Lecture 3 - 12 ERS 482/682 (Fall 2002) Descriptive statistics Mean, WHY?
13
Lecture 3 - 13 ERS 482/682 (Fall 2002) Descriptive statistics Mean, ss p =.95
14
Lecture 3 - 14 ERS 482/682 (Fall 2002) Measurement errors Estimating missing data (Sec. 4.2.3) –Station-average method –Normal-ratio method –Inverse-distance weighting –Regression
15
Lecture 3 - 15 ERS 482/682 (Fall 2002) Station-average method p1p1 p2p2 p3p3 p4p4 p5p5 p6p6 p7p7 G = # of gages with data Use when gage values are similar
16
Lecture 3 - 16 ERS 482/682 (Fall 2002) Normal-ratio method p1p1 p2p2 p3p3 p4p4 p5p5 p6p6 p7p7 G = # of gages with data P 0 = average annual precip at gage 0 P g = average annual precip at gage g Use when gage values are not similar
17
Lecture 3 - 17 ERS 482/682 (Fall 2002) Inverse-distance weighting p1p1 p2p2 p3p3 p4p4 p5p5 p6p6 p7p7 G = # of gages with data d g = distance of gage g from gage 0 b = 1 or 2
18
Lecture 3 - 18 ERS 482/682 (Fall 2002) Regression p1p1 p2p2 p3p3 p4p4 p5p5 p6p6 p7p7 G = # of gages with data b g = regression coefficient for gage g Caution: Series and data must be independent
19
Lecture 3 - 19 ERS 482/682 (Fall 2002) Spatial variability P = total precipitation on the watershed A = area of watershed
20
Lecture 3 - 20 ERS 482/682 (Fall 2002) Weighted averages w g = weight of gage g
21
Lecture 3 - 21 ERS 482/682 (Fall 2002) Weighted averages Thiessen polygons a g = area of subregion for gage g
22
Lecture 3 - 22 ERS 482/682 (Fall 2002) Weighted averages Isohyetal methods –isohyet: contour of equal precipitation a i = area of subregion between p i- and p i+ isohyets p 0.5 p 1.0 p 1.5 p 2.0 a2a2
23
Lecture 3 - 23 ERS 482/682 (Fall 2002) Temporal variability Exceedence probability or return period Stochastic hydrology (GEOL 702J) –PDF = probability distribution function f(x) = p (X = x) –1 – CDF exceedence probability1-F(x) = p(X > x) exceedence probability probability non-exceedence probability –CDF = cumulative distribution function F(x) = p (X x)
24
Lecture 3 - 24 ERS 482/682 (Fall 2002) Displaying cumulative frequency f(x) Discharge (cfs) 123456More 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 +
25
Lecture 3 - 25 ERS 482/682 (Fall 2002) Displaying cumulative frequency f(x) Discharge (cfs) 123456More 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 +
26
Lecture 3 - 26 ERS 482/682 (Fall 2002) Displaying cumulative frequency F(x) 0 1
27
Lecture 3 - 27 ERS 482/682 (Fall 2002) Normal distribution CDF: Given x Find P(X x)CDF PDF
28
Lecture 3 - 28 ERS 482/682 (Fall 2002) Normal distribution Non-exceedence probability: P (X x) Exceedence probability: P (X>x)
29
Lecture 3 - 29 ERS 482/682 (Fall 2002) Return period 10-year design = or 1 – P(X x) 50-year design = 100-year design = Does the 1-year storm occur every year???
30
Lecture 3 - 30 ERS 482/682 (Fall 2002) Normal distribution 10-year design = Given F(x)=P(X x) What is x?
31
Lecture 3 - 31 ERS 482/682 (Fall 2002) Using the normal distribution as a model 70% non-exceedence probability
32
Lecture 3 - 32 ERS 482/682 (Fall 2002) Using the normal distribution as a model + + + + + + + + + + + + + 30% exceedence probability
33
Lecture 3 - 33 ERS 482/682 (Fall 2002) Figures 2-7, 2-8, 2-9 (Dunne & Leopold 1978)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.