Download presentation
1
Oculus Superne 1 1.) Introduction 2.) Mission & Market 3.) Operations
4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Oculus Superne 1
2
CoDR Overview Introduction Mission Statement & Market Operations
2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Introduction Mission Statement & Market Operations Walk Around Payload and Capabilities Aircraft Sizing Aerodynamics Stability/Trim Propulsion Structures Cost Analysis Summary 2
3
Mission Statement 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary To provide a multi-service UAS which acts as the primary detection method for third party infringement of pipelines, performs power-line equipment inspection, and detects threats to forested areas. The system will also facilitate a rapid response in the event of a complete system failure or natural disaster. 3
4
Target Market Mission Power Line Pipeline Forest Monitoring
1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Mission Power Line Pipeline Forest Monitoring Business Plan Target Customers DOT NPS Private Oil/Gas Companies 4
5
Customer Attributes Patrolling the Right-of-Way Constant Coverage
1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Patrolling the Right-of-Way Third Party Infringement Constant Coverage Cost Reduction Safety Factors 5
6
Engineering Requirements
1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary 6
7
Operation Profile Type of Equipment Ground Stations Relay Stations UAV
1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Type of Equipment Ground Stations Relay Stations UAV Takeoff/Landing on Rough Airfield Operate from 1000 ft (AGL) Observe & Transmit to Local Relay Stations Relay Stations Transmit Information Back to Operator Number and Frequency of UAV Flight Completely Customer Defined 7
8
Walk Around 8 1.) Introduction 2.) Mission & Market 3.) Operations
5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary 8
9
Internal Walk Around 9 1.) Introduction 2.) Mission & Market
3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary 9
10
Sensors LIDAR (Laser Imaging Detection and Ranging) Corridor Mapping
1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary LiteMapper 5600 components Airborne Lidar Terrain Mapping System LIDAR (Laser Imaging Detection and Ranging) Corridor Mapping Land Surveying Vegetation Growth / Density IR/Visual Camera - Thermal Imaging - Video Tracking - Detailed Pictures 10
11
Payload Requirements LIDAR Operates Optimally at 650-1300ft AGL
1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary LIDAR Operates Optimally at ft AGL Used Only During Inspection IR / Visual Camera Runs Throughout Mission @ 1000 ft AGL 271,212 ft2 @ 12 x Zoom 1462 ft2 11
12
Sizing Information and Assumptions
1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Sizing Information and Assumptions Sizing Code: Avid ACS v4.1 Equation Sets General Aviation Component Weight Equations Tail Volume Coefficient Fixed Engine Weight Horsepower The engine parameters that were set were the weight and the horsepower of the off the shelf engine chosen. 12
13
Carpet Plot Constraints and Inputs
1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Carpet Plot Constraints and Inputs Constraints 925 ft takeoff constraint (ground roll + 50 ft obstacle clearance) 550 ft landing constraint Stall speed, ceiling and 2g maneuver not influential [ft] MSL 13
14
Carpet Plot 14 1.) Introduction 2.) Mission & Market 3.) Operations
4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary 14
15
Sizing Code Output 15 1.) Introduction 2.) Mission & Market
3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary 15
16
16 1.) Introduction 2.) Mission & Market 3.) Operations
4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary 16
17
Compliance Matrix 17 1.) Introduction 2.) Mission & Market
3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Compliance Matrix 17
18
Performance (ft MSL) 18 1.) Introduction 2.) Mission & Market
3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary (ft MSL) 18
19
Lift Distribution Ideal Elliptical Lift (Too costly)
1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Ideal Elliptical Lift (Too costly) Linear distribution cost effective Still gives acceptable performance (ft2/sec) 19
20
Airfoil selection Considered 3 airfoils Chose NLF-1015 NASA NLF-1015
1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Considered 3 airfoils NASA NLF-1015 Liebeck LNV109a NACA (baseline) Chose NLF-1015 Superior L/D at operating conditions (Low alpha) 20
21
Drag Buildup Component CD0 build for major components of aircraft
1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Component CD0 build for major components of aircraft CD0 - parasite drag on the aircraft 21
22
1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Aerodynamic performance, lift, and drag from XFoil at Mach number for cruise 22
23
Longitudinal Stability Analysis
1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Static margin for a fully loaded aircraft 34% Static margin with no fuel 41% Xcg .467 % CLα .14 Xac,wing .46 % Xac,ht .932% Cmα -.048 Static Margin .343 Some basic stability analysis has been done for this aircraft. (Percentages of Aircraft Length) 23
24
Cruise Trim: V = 100 kts, q = 32.46 => C_L = .4467
1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Cruise Trim: V = 100 kts, q = => C_L = .4467 24
25
Lateral Trim Crosswind correction Final sizes:
1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Crosswind correction Capable of steady level flight in a crosswind that is 30% of takeoff speed at a 11.5o side slip angle with no more than 20o of rudder deflection. Final sizes: Rudder: cf/c = 0.8 Aileron: cf/c = 0.2 25
26
Engine Selection UAV Engines Ltd Model AR741 26 1.) Introduction
2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary UAV Engines Ltd Model AR741 26
27
Propeller Selection Helices Halter
1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Helices Halter Model HH yr7022fa Specifically designed for the AR741 Engine Fixed Pitch Beech Wood Composite This propeller is designed for this particular engine. [deg] 27
28
Material Selection Al-2024 for the fuselage and Al-7075 landing gear.
1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Al-2024 for the fuselage and Al-7075 landing gear. Aluminum inexpensive, $3-4/lb Strong (E = 106 psi) and light Resists corrosion and has good fracture toughness properties AS4/ Carbon Epoxy for the wing and tail skin Mechanics of Materials, James Gere 28
29
Weight Statement 29 1.) Introduction 2.) Mission & Market
3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary 29
30
Reliability and Maintainability
1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Minimal Maneuvers Steady Static Margin Minimal Parts Non-retractable Landing Gear Few Payload Parts Highly Reliable Data from Sensors 30
31
Cost Analysis Life-Cycle
1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Trans-Alaskan pipeline is 800 miles: Average mission is there and back (1600 miles) Average fuel price is ($1.80) Average wage is $20 an hour with 2 employees Production cost assumes at least 30 aircraft will be made in its life time RDTE cost of $993,000. Assuming Operating 10.7 hours a day for 360 days of the year. Modified around DAPCA IV Cost Model Scaled to a UAV application Analysis based off of Trans-Alaskan Pipeline Customer 31
32
Summary Future Work More Structural Analysis CFD Analysis
1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Future Work More Structural Analysis CFD Analysis More Research In Operation Costs Feasibility 32
33
Questions? 33 1.) Introduction 2.) Mission & Market 3.) Operations
4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Questions? 33
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.