Download presentation
Presentation is loading. Please wait.
1
Bootstrapping an Ontology-based Information Extraction System Alexander Maedche, Günter Neumann, Steffen Staab (presented by D. Lonsdale) CS 652 – June 7/04
2
Traditional IE + machine learning Extensive use of NLP (SMES: German, English, Japanese) Ontologies and related tools (OntoEdit, OntoBroker) abstract ontology + lexicon concrete ontology Conclusions/reflections Overview
3
The mantra Lexical knowledge As usual, concepts are grounded in lexical items Extraction rules OntoBroker: deductive, OODB, F-Logic Ontology Abstract ontology + lexicon concrete ontology
4
Lexical knowledge Low-level lexicons, dynamically updated Basic low-level NLP: tokenization (50 classes) morphological processing POS tagging named entity extraction chunk parsing thematic role assignment (grammatical function) Cascading finite-state transducers
5
The NLP component
6
NLP terms Dependency syntax Chunk parsing Subcategorization Case Topolological fields PP attachment
7
Dependency syntax
8
Extraction Concept definitions Inference rules/axioms Bridging (forward inferencing) Syntactic dependency relations “...implementations of idiosyncratic syntactic cues for particular ontological structures...” Logical relations (e.g. transitivity, LocatedIn) OntoBroker engine
9
OntoEdit display (tourism)
10
An abstract ontology
11
A(n ontology) lexicon
12
Ontology learning So how does ontology learning happen? Ontology engineer specifies, refines knowledge structures Select and process a text corpus with the model Use a set of different learning approaches “...generalized association rule learning algorithm...” Extend the extracted model (all three parts...) Human reviews learning decisions The ontology is concrete, the methodology description less so...
13
The overall approach/system
14
GETESS visualization
15
Conclusions/reflections Heavy use of NLP (good/bad) Fairly typical mapping of lexical items, concepts, relations Toolkit approach: lingware, inferencing, GUI’s Machine learning description is vague A picture is only worth a thousand words...
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.