Download presentation
Presentation is loading. Please wait.
1
EE40: Introduction to Microelectronic Circuits Summer 2004 Alessandro Pinto apinto@eecs.berkeley.edu
2
Lect. 1 - 06/21/2004Alessandro Pinto, EE40 Summer 20042 Staff TAs Wei Mao maowei@eecs.berkeley.edumaowei@eecs.berkeley.edu Renaldi Winoto winoto@eecs.berkeley.eduwinoto@eecs.berkeley.edu Reader Haryanto Kurniawan haryanto@uclink.berkeley.edu haryanto@uclink.berkeley.edu
3
Lect. 1 - 06/21/2004Alessandro Pinto, EE40 Summer 20043 Course Material Main reference http://www-inst.eecs.berkeley.edu/~ee40 Textbook (s) Electrical Engineering Principles and Applications by Allan R. Hambley. Reader available at Copy Central, 2483 Hearst Avenue Publications Selected pubs posted on the web
4
Lect. 1 - 06/21/2004Alessandro Pinto, EE40 Summer 20044 Course Organization Lectures: 3 x week (20 total) Labs Experimenting and verifying Building a complete system: mixer, tone control, amplifier, power supply, control Discussion sessions More examples, exercise, exams preparation Homework Weekly, for a better understanding Exams 2 midterms, 1 final Grade HW: 10%, LAB: 10%, MID: 20%, FINAL: 40%
5
Lect. 1 - 06/21/2004Alessandro Pinto, EE40 Summer 20045 Table of contents Circuit components Resistor, Dependent sources, Operational amplifier Circuit Analysis Node, Loop/Mesh, Equivalent circuits First order circuit Active devices CMOS transistor Digital Circuits Logic gates, Boolean algebra Gates design Minimization Extra Topics CAD for electronic circuits
6
Lect. 1 - 06/21/2004Alessandro Pinto, EE40 Summer 20046 Prerequisites Math 1B Physics 7B
7
Lect. 1 - 06/21/2004Alessandro Pinto, EE40 Summer 20047 Lecture 1 Illustrates the historical background Electricity Transistor Monolithic integration Moore’s law Introduces signals: Analog and Digital
8
Lect. 1 - 06/21/2004Alessandro Pinto, EE40 Summer 20048 History of EE: Electricity Hans Christian Oersted ’s Experiment (1820) (Source: Molecular Expression) (1)(1) (2)(2) (3)(3) (4)(4) Michael Faraday’s Experiment (1831) Maxwell’s Equations (1831)
9
Lect. 1 - 06/21/2004Alessandro Pinto, EE40 Summer 20049 History of EE: Transistor Base Collector Emitter J. Bardeen,W. Brattain and W. Shockley, 1939-1947 B C E BJT G D S MOSFET
10
Lect. 1 - 06/21/2004Alessandro Pinto, EE40 Summer 200410 History of EE: Integration Jack S. Kilby (1958) Resistor Capacitor Inductor Diode Transistor Monolithic (one piece) circuits: built form a silicon substrate
11
Lect. 1 - 06/21/2004Alessandro Pinto, EE40 Summer 200411 Today’s Chips: Moore’s Law Gordon Moore, 1965 Number of transistor per square inch doubles approximately every18 months Implications Cost per device halves every 18 months More transistors on the same area, more complex and powerful chips Future chips are very hard to design!!! Fabrication cost is becoming prohibitive
12
Lect. 1 - 06/21/2004Alessandro Pinto, EE40 Summer 200412 Today’s Chips: An Example 300mm wafer, 90nm P4 2.4 Ghz, 1.5V, 131mm 2 90nm transistor (Intel) Hair size (1024px)
13
Lect. 1 - 06/21/2004Alessandro Pinto, EE40 Summer 200413 Signals: Analog vs. Digital t f(t) t g(t) Analog: Analogous to some physical quantity Digital: can be represented using a finite number of digits
14
Lect. 1 - 06/21/2004Alessandro Pinto, EE40 Summer 200414 Example of Analog Signal Properties: Dynamic range: maxV – minV Frequency: number of cycles in one second Voltage ( V) Time (s) A (440Hz) piano key stroke
15
Lect. 1 - 06/21/2004Alessandro Pinto, EE40 Summer 200415 Analog Circuits It is an electronic subsystem which operates entirely on analog signals Amplifier i(t) o(t) o(t) = K i(t)
16
Lect. 1 - 06/21/2004Alessandro Pinto, EE40 Summer 200416 Digital Circuits It is an electronic subsystem which operates entirely on numbers (using, for instance, binary representation) 1-bit Adder a b sum carry absumcarry 0000 0110 1010 1101
17
Lect. 1 - 06/21/2004Alessandro Pinto, EE40 Summer 200417 Encoding of Digital Signals We use binary digits Two values: { 0, 1 } Positional system Encoded by two voltage levels +1.5 V → 1, 0 V → 0 +1.5 V 0 V 5 → 101 +1.5 V 0 V threshold 0 1 noise margin
18
Lect. 1 - 06/21/2004Alessandro Pinto, EE40 Summer 200418 Why Digital? Digital signals are easy and cheap to store Digital signals are insensible to noise Boolean algebra can be used to represent, manipulate, minimize logic functions Digital signal processing is easier and relatively less expensive than analog signal processing
19
Lect. 1 - 06/21/2004Alessandro Pinto, EE40 Summer 200419 Digital Representation of Analog Signals Problem: represent f(t) using a finite number of binary digits Example: A key stroke using 6 bits Only 64 possible values, hence not all values can be represented Quantization error: due to finite number of digits Time sampling: time is continuous but we want a finite sequence of numbers
20
Lect. 1 - 06/21/2004Alessandro Pinto, EE40 Summer 200420 Digital Representation of Analog Signals t f(t) Dynamic Range: [-30,30] V Precision: 5 V t Sampling 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 -5 V -10 V -15 V -20 V -25 V -30 V Quantization 1011 0100 0101 0110 0001 0010 1001 1100 0100 0011 0010 0011 Result
21
Lect. 1 - 06/21/2004Alessandro Pinto, EE40 Summer 200421 Digital Representation of Logic Functions Boolean Algebra: Variables can take values 0 or 1 (true or false) Operators on variables: a AND b a·b a OR b a+b NOT b b Any logic expression can be built using these basic logic functions Example: exclusive OR
22
Lect. 1 - 06/21/2004Alessandro Pinto, EE40 Summer 200422 Full Adder Example 1-bit Adder a b sum carry absumcarry 0000 0110 1010 1101
23
Lect. 1 - 06/21/2004Alessandro Pinto, EE40 Summer 200423 Summary Analog signals are representation of physical quantities Digital signals are less sensible to noise than analog signals Digital signals can represent analog signals with arbitrary precision (at the expense of digital circuit cost) Boolean algebra is a powerful mathematical tool for manipulating digital circuits
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.