Download presentation
Presentation is loading. Please wait.
1
Numerical simulations of the MRI: the effects of dissipation coefficients S.Fromang CEA Saclay, France J.Papaloizou (DAMTP, Cambridge, UK) G.Lesur (DAMTP, Cambridge, UK), T.Heinemann (DAMTP, Cambridge, UK) Background: ESO press release 36/06
2
Setup
3
The shearing box (1/2) H H HH x y z Local approximation Code ZEUS (Hawley & Stone 1995) Ideal or non-ideal MHD equations Isothermal equation of state v y =-1.5 x Shearing box boundary conditions (Lx,Ly,Lz)=(H, H,H) Magnetic field configuration Zero net flux: B z =B 0 sin(2 x/H) Net flux: B z =B 0 x z
4
The shearing box (2/2) Transport diagnostics Maxwell stress: T Max = /P 0 Reynolds stress: T Rey = / P 0 =T Max +T Rey Small scale dissipation Reynolds number: Re =c s H/ Magnetic Reynolds number: Re M =c s H/ Magnetic Prandtl number: Pm= /
5
The issue of convergence (Nx,Ny,Nz)=(128,200,128) Total stress: =2.0 10 -3 (Nx,Ny,Nz)=(256,400,256) Total stress: =1.0 10 -3 (Nx,Ny,Nz)=(64,100,64) Total stress: =4.2 10 -3 Fromang & Papaloizou (2007) The decrease of with resolution is not a property of the MRI. It is a numerical artifact! Code ZEUS Zero net flux
6
Numerical dissipation
7
Numerical resisitivity (Nx,Ny,Nz)=(128,200,128) No explicit dissipation included BUT: numerical dissipation depends on the flow itself in ZEUS… Residual - k 2 B(k) 2 Fourier Transform and dot product with the FT magnetic field: =0 (steady state)Balanced by numerical dissipation ( k 2 B(k) 2 ) Re M ~30000 (~ Re)
8
Pm= / =4, Re=3125 (Nx,Ny,Nz)=(128,200,128) Maxwell stress: 7.4 10 -3 Reynolds stress: 1.6 10 -4 Total stress: =9.1 10 -3 Residual - k 2 B(k) 2 balanced by numerical dissipation Explicit dissipation Statistical issues at large scale
9
Varying the resolution (Nx,Ny,Nz)=(128,200,128) Maxwell stress: 7.4 10 -3 Reynolds stress: 1.6 10 -3 Total stress: =9.1 10 -3 (Nx,Ny,Nz)=(256,400,256) Maxwell stress: 9.4 10 -3 Reynolds stress: 2.1 10 -3 Total stress: =1.1 10 -2 (Nx,Ny,Nz)=(64,100,64) Maxwell stress: 6.4 10 -3 Reynolds stress: 1.6 10 -3 Total stress: = 8.0 10 -3 Good agreement but… Residual - k 2 B(k) 2 Numerical & explicit dissipation comparable!
10
Code comparison: Pm= / =4, Re=3125 ZEUS : =9.6 10 -3 (resolution 128 cells/scaleheight) NIRVANA : =9.5 10 -3 (resolution 128 cells/scaleheight) SPECTRAL CODE: =1.0 10 -2 (resolution 64 cells/scaleheight) PENCIL CODE : =1.0 10 -2 (resolution 128 cells/scaleheight) Good agreement between different numerical methods NIRVANA SPECTRAL CODE PENCIL CODE ZEUS Fromang et al. (2007)
11
Code comparison: Pm= / =4, Re=3125 ZEUS : =9.6 10 -3 (resolution 128 cells/scaleheight) NIRVANA : =9.5 10 -3 (resolution 128 cells/scaleheight) SPECTRAL CODE: =1.0 10 -2 (resolution 64 cells/scaleheight) PENCIL CODE : =1.0 10 -2 (resolution 128 cells/scaleheight) Good agreement between different numerical methods NIRVANA SPECTRAL CODE PENCIL CODE ZEUS Fromang et al. (2007) RAMSES =1.4 10 -2 (resolution 128 cells/scaleheight)
12
Zero net flux: parameter survey
13
Flow structure: Pm= / =4, Re=6250 (Nx,Ny,Nz)=(256,400,256) DensityVertical velocityBy component Movie: B field lines and density field (software SDvision, D.Polmarede, CEA) Schekochihin et al. (2007) Large Pm case VelocityMagnetic field
14
Effect of the Prandtl number Take Rem=12500 and vary the Prandtl number…. (Lx,Ly,Lz)=(H, H,H) (Nx,Ny,Nz)=(128,200,128) increases with the Prandtl number No MHD turbulence for Pm<2 Pm= / =4 Pm= / = 8 Pm= / = 16 Pm= / = 2 Pm= / = 1
15
Pm= / =4 (Nx,Ny,Nz)=(128,200,128) Re=3125 Total stress =9.2 ± 2.8 10 -3 Total stress =7.6 ± 1.7 10 -3 (Nx,Ny,Nz)=(256,400,256) Re=6250 By in the (x,z) plane
16
Pm=4, Re=12500 Total stress =2.0 ± 0.6 10 -2 (Nx,Ny,Nz)=(512,800,512) BULL cluster at the CEA ~500 000 CPU hours (~60 years) 1024 CPUs (out of ~7000) 2 10 6 timesteps 600 GB of data No systematic trend as Re increases…
17
Power spectra Re=3125Re=6250 Re=12500 Kinetic energy Magnetic energy
18
Summary: zero mean field case Transport increases with Pm No transport when Pm≤1 Behavior at large Re, Re M ? Fromang et al. (2007)
19
Transition Pm=3 Pm=4 Pm=2.5 ~4.5 10 -3 (Lx,Ly,Lz)=(H, H,H) (Nx,Ny,Nz)=(128,200,128) Re=3125
20
Vertical net flux
21
The mean field case Lesur & Longaretti (2007) - Pseudo-spectral code, resolution: (64,128,64) - (Lx,Ly,Lz)=(H,4H,H) - =100 Pm 1 min max Critical Pm? Sensitivity on Re, ?
22
Flow structure Pm= / >>1 Viscous length >> Resistive length Schekochihin et al. (2007) VelocityMagnetic field Pm = / <<1 Viscous length << Resistive length Schekochihin et al. (2007) VelocityMagnetic field vzvz BzBz vzvz BzBz Re=800Re=3200
23
Relation to the MRI modes Growth rates of the largest MRI mode No obvious relation between and the MRI linear growth rates
24
Conclusions & open questions Include explicit dissipation in local simulations of the MRI: resistivity AND viscosity Zero net flux AND nonzero net flux an increasing function of Pm Behavior at large Re is unclear ? MHD turbulence No turbulence Re Pm Vertical stratification? Compressibility ( see poster by T.Heinemann )? Global simulations? What is the effect of large scales? Is brute force the way of the future? Numerical scheme? Large Eddy simulations? Pm 1 min max Critical Pm? Sensitivity on Re, ?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.