Presentation is loading. Please wait.

Presentation is loading. Please wait.

Intensity Limits and Beam Performances in the High-Energy Storage Ring

Similar presentations


Presentation on theme: "Intensity Limits and Beam Performances in the High-Energy Storage Ring"— Presentation transcript:

1 Intensity Limits and Beam Performances in the High-Energy Storage Ring
HESR-Consortium: FZJ, GSI, TSL, and Univ. of Bonn and Dortmund HESR Layout Beam Equilibrium Beam Losses and Luminosity Other Intensity Limiting Effects Summary & Outlook 9/15/05 A. Lehrach, HESR, Coulomb ’05

2 Accumulation and Acceleration of Antiprotons at FAIR
Antiproton production Linac: 50 MeV H- SIS18: 5·1012 protons / cycle SIS100: 2-2.5·1013 protons / cycle 26 GeV protons bunch compressed to 50nsec Production target: antiprotons 3% momentum spread CR: bunch rotation and stochastic cooling at 3.8 GeV/c RESR: accumulation at 3.8 GeV/c Production rate 2·107/s (7·1010/h) antiprotons 9/15/05 A. Lehrach, HESR, Coulomb ’05

3 A. Lehrach, HESR, Coulomb ’05
HESR Layout One half of the arc super-period Momentum range 1.5 – 15 GeV/c 6-fold symmetry arcs with a length of 155 m each. Mirror symmetric FODO structure designed as pseudo second order achromat with dispersion suppression. Two straight sections of 132 m length each. Ring circumference 574 m. Qx = 12.16 Qy = 12.18 γtr = 6.5i 9/15/05 A. Lehrach, HESR, Coulomb ’05

4 Experimental Requirements
PANDA (Strong Interaction Studies with Antiprotons): Momentum range: 1.5 to 15 GeV/c “High Resolution Mode” “High Luminosity Mode” Momentum range Up to 9 GeV/c Full momentum range Number of antiprotons 1010 1011 Target thickness 4·1015 cm-2 Peak luminosity 2·1031 cm-2s-1 2·1032 cm-2s-1 Beam emittance 1-2 mm mrad Momentum resolution p/prms = 10-5 p/prms = 10-4 Beam Cooling Electron Cooling Stochastic Cooling 9/15/05 A. Lehrach, HESR, Coulomb ’05

5 Electron Cooler HV section HESR Electron Cooler
Feasibility study of magnetized electron cooling for the HESR 9/2003 (Budker Institute, Novosibirsk, RUS) HV section electrostatic accelerator MV, up to 2 A charged by H- beam Cooling section sc solenoid length 30 m magnetic field T straightness 10-5 beam diameter mm Bending section electrostatic up to 21 KV/cm bending radius 4 m HESR Electron Cooler High voltage (8 MV) tank 12 m Acceleration column Charger: H- Cyclotron HESR beam Cooling section Solenoid 8 m 30 m 9/15/05 A. Lehrach, HESR, Coulomb ’05

6 Electron Cooling Force
Fit to Parkhomchuk formula CELSIUS measurement Dec. 2004 Measurements at CELSIUS seem to predict an accuracy of the longitudinal Parkhomchuk force within a factor of 2 Parkhomchuk model (*particle frame): Effective Coulomb log: Coolig rate: Longitudinal force (momentum spread ): 9/15/05 A. Lehrach, HESR, Coulomb ’05

7 Pellet target (WASA@CELSIUS)
Formation of frozen hydrogen pellets H2 (=0.08 g/cm3) 60000 pellets/s  Beam spot d=30 m <n> = 5x1015 cm-2 1 mm HESR: Target will be switched on after injection and cooling/IBS equilibrium Transverse heating is required to ensure 1 mm spot size on the target 9/15/05 A. Lehrach, HESR, Coulomb ’05

8 A. Lehrach, HESR, Coulomb ’05
Beam Heating Transverse emittance growth in the target: βx,y small, D=D‘=0, θrms: Mean Coulomb scattering angle Longitudinal emittance growth in the target: βs=h|η|/Qs (bunched beams), δrms: Mean relative momentum deviation Multiple IBS: (Soerensen or ‘plasma’ model) Diffusion constant: 9/15/05 A. Lehrach, HESR, Coulomb ’05

9 Equilibrium for Core Particles (rms analytic model)
Results compare very well with BetaCool simulations With equilibrium emittance With fixed emittance 1011 particles 1011 particles 1010 particles 1010 particles Electron Cooler: L = 30 m Ie = 0.2 A veff = 2·104 m/s c = 100 m Target: Pellet Stream dt = 4·1015 cm-2 t = 1 m O. Boine-Frankenheim et al. 9/15/05 A. Lehrach, HESR, Coulomb ’05

10 INTAS Project “Advanced Beam Dynamics for Storage Rings”
FZ Jülich, GSI Darmstadt, JINR Dubna, Univ. Kiev, ITEP Moscow, TSL Uppsala Kinetic simulation of cooling dynamics Benchmarking of different models for IBS, cooling forces and beam-target interaction Analytical and numerical studies of instability thresholds in the presence of cooling and space charge Impedance library Kinetic simulation studies of accumulation schemes 9/15/05 A. Lehrach, HESR, Coulomb ’05

11 A. Lehrach, HESR, Coulomb ’05
Beam Loss Mechanisms Hadronic Interaction Single Target Scattering out of the acceptance Energy straggling out of the acceptance Single IBS Scattering (Touschek loss rate) 9/15/05 A. Lehrach, HESR, Coulomb ’05

12 A. Lehrach, HESR, Coulomb ’05
Hadronic Interaction Loss rate: PDG nt = 4·1015 cm-2 frev = 443, 519, 521 kHz σppbar = 100, 57, 51 mbarn 1.5 GeV/c 9 GeV/c 15 GeV/c Relative loss rate / s-1 1.7·10-4 1.2·10-4 1.1·10-4 1/e lifetime 1.6 h 2.3 h 2.5 h 9/15/05 A. Lehrach, HESR, Coulomb ’05

13 Single Coulomb Scattering
Loss rate: εt = 1 mm mrad nt = 4·1015 cm-2, Hydrogen frev = 443, 519, 521 kHz Rutherford Cross Section 1.5 GeV/c 9 GeV/c 15 GeV/c Relative Beam Loss Rate / s-1 1.8·10-4 7.3·10-6 2.1·10-6 1/e lifetime / h 1.5 h 38.1 h 132.3 h 9/15/05 A. Lehrach, HESR, Coulomb ’05

14 Energy Loss Straggling
Single collision energy loss probability ( energy loss): Maximum energy transfer: Scaling quantity (~ mean energy loss): 9/15/05 A. Lehrach, HESR, Coulomb ’05

15 Energy Loss Straggling
Loss probability per turn Loss rate: δeff= -εeff/(β20E0)=10-3 frev = 443, 519, 521 kHz 1.5 GeV/c 9 GeV/c 15 GeV/c Relative Beam Loss Rate / s-1 3.5·10-4 4.1·10-5 2.8·10-5 1/e Beam life time / h 0.79 6.8 9.9 9/15/05 A. Lehrach, HESR, Coulomb ’05

16 Single IBS: Touschek Loss Rate
Single IBS changes the scattered particle momentum sufficiently that it excides the momentum acceptance of the accelerator Loss rate: δeff=10-3 1/T0 = frev = 443, 519, 521 kHz Touschek (IBS) lifetime increases with larger emittance Relative Beam Loss Rate / s-1 1.5 GeV/c 9 GeV/c 15 GeV/c 0.01mm mrad 4·10-2 2·10-4 4·10-5 1mm mrad 2·10-7 4·10-8 1/e Beam life time / h 6.9 1390 7000 9/15/05 A. Lehrach, HESR, Coulomb ’05

17 Relative Beam Loss Rate / s-1 A. Lehrach, HESR, Coulomb ’05
Beam Life Time 1.5GeV/c 9 GeV/c 15 GeV/c Relative Beam Loss Rate / s-1 7.4·10-4 1.7·10-4 1.4·10-4 1/e Beam life time / s ~ 1400 ~ 6000 ~ 7200 L0: initial luminosity τ: beam lifetime texp: experimental time tprep: beam preparation time np: number of particle nt: target desnity frev revolution frequency 9/15/05 A. Lehrach, HESR, Coulomb ’05

18 A. Lehrach, HESR, Coulomb ’05
HESR Nominal Cycle 9/15/05 A. Lehrach, HESR, Coulomb ’05

19 Average Luminosity for HL
for different pbar production rates! 9/15/05 A. Lehrach, HESR, Coulomb ’05

20 A. Lehrach, HESR, Coulomb ’05
Effects on the Beam Injection: Losses due to injection oscillation and RF capture Pre-Cooling: Cooled and hot beams merge Ramp: Snapback Non-linear part of the ramp Tune and Chromaticity control Beam preparation: Squeeze Orbit Control for beam-target overlap Physics: Beam-Target Interaction, IBS, beam losses 9/15/05 A. Lehrach, HESR, Coulomb ’05

21 Effect of Electron Beam
Tune shift: at lowest momentum ξ: neutralization factor Electron heating . Coherent Dipole Instabilities: In the presence of the electron beam in the cooling section, both longitudinal and transverse instability could take place for the circulating beam due to ion clouds Theoretical “forecast”: N.S.Dikansky, V.V.Parkhomchuk, D.V.Pestrikov, Instability of Bunched Proton Beam interacting with ion “footprint”, Rus. Journ. Of Tech. Physics, v.46 (1976) 2551. P. Zenkevich, A. Dolinskii and I. Hofmann, Dipole instability of a circulating beam due to the ion cloud in an electron cooling system, NIM A 532 (October 2004). 9/15/05 A. Lehrach, HESR, Coulomb ’05

22 A. Lehrach, HESR, Coulomb ’05
Summary & Outlook Beam equilibrium is dominated by IBS  heat the beam transversely Major beam losses are induces by beam-target interaction  sufficient pbar production rate needed at low momenta Beam effects and losses during cycle Effect of the electron beam on the circulating beam 9/15/05 A. Lehrach, HESR, Coulomb ’05


Download ppt "Intensity Limits and Beam Performances in the High-Energy Storage Ring"

Similar presentations


Ads by Google