Download presentation
Presentation is loading. Please wait.
1
Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array
2
Sascha Schediwyschediwy@physics.ox.ac.uk Presentation Overview D-PAD Aims What is D-PAD? Advantages of this design Recent results Future work
3
Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Aims Broadband SKA test system which will work in RFI environment Develop an SKA 1 AA-low compatible digital back-end processing system Experimentally quantify the effect of side lobes on imaging dynamic range Investigate novel direct imaging correlator algorithms Compare calibration issues of aperture arrays with dishes of similar frequency
4
Sascha Schediwyschediwy@physics.ox.ac.uk What is D-PAD? D-PAD = Danny’s PhD Aperture-array Demonstrator Key Values: f = 1000-1500MHz, 8 stations/tiles, sparse high-gain antennas the first tile
5
Sascha Schediwyschediwy@physics.ox.ac.uk What is D-PAD? Least complex instrument possible that replicates most key aspects of an SKA aperture array Flexible and reconfigurable hardware and software Testbed for comparing measurements with simulations Digital system can be recycled for AA-low and AA-mid test systems Science with AA-high feasibility study; transients, solar, local HI, pulsars?
6
Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD High Gain Antenna Antenna element beam pattern@1300MHz) Half power beam width: ±24°, directivity: 8.45dBi, sidelobe: -15dB, front-to-back: -18dB, ellipticity: 8%
7
Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Analogue System
8
Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Analogue System Y-Polarisation antenna blade LNA 2-way 0° combiner X-Polarisation amp2 coax antenna blade LNA 2-way 0° combiner amp2 coax filter gain block 16-way 0° beamformer gain block coax filter coax gain block filter
9
Sascha Schediwyschediwy@physics.ox.ac.uk 10GbE D-PAD Digital System 16-port 10GbE switch data acquisition computer 10GbE X 2 Y 2 X 1 Y 1 ROACH FFFF X X 4 Y 4 X 3 Y 3 ROACH FFFF X 6 Y 6 X 5 Y 5 ROACH FFFF X 8 Y 8 X 7 Y 7 iADC ROACH FFFF 10GbE iADC Image credits CASPER
10
Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Digital System F Design TypeContinuum21-cm Line FPGA Clock250MHz75MHz Band Pass500MHz150MHz Nyquist Zone3 rd 9 th Frequency Range1000-15001350-1500 Spectral Channels20484096 Spectral Resolution488kHz36.6kHz Velocity Resolution51km/s7.7km/s Complimentary spectrometer designs Milli-second, fast transient spectrometer design will be incorporated shortly Image credits CASPER
11
Sascha Schediwyschediwy@physics.ox.ac.uk Advantages of this Design High-gain antenna results in greater sensitivity also reduces impact of sparse array grating lobes higher imaging dynamic range than sparse arrays with omni- directional antennas Sparse aperture arrays have faster survey speed small diameter stations = larger intrinsic Field-of-View than dishes of same total collecting area: FoV = π (1.22*λ/d) 2 Wide radio frequency bandwidth (500MHz) greater continuum sensitivity, greater flexibility (compare with LOFAR and MWA; 32MHz ) Greater sensitivity for line surveys at higher redshift full collecting area over entire bandwidth: A eff = G λ c 2 /4π
12
Sascha Schediwyschediwy@physics.ox.ac.uk Advantages of this Design Analogue beamformer reduces cost fewer receiver chains, less power, less computation Fast ADCs means no complicated down conversion Direct sampling in 3 rd Nyqusit zone (same digital hardware as 30-470MHz SKA AA-low system) Novel correlators reduce computational cost direct imaging correlators MOFF or FFTT (close-packed tiles can use Fourier transform on a spatial grid ) MOFF can use FFT while traditional FX correlator must use DFT Higher operating frequency, less demanding calibration lower sky brightness temperature, fewer bright in foreground subtraction, less complex polarisation calibration
13
Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Frequency Spectrum 100011001200130014001500 Frequency (MHz) 40 30 20 10 0 Arb. Power (dB)
14
Sascha Schediwyschediwy@physics.ox.ac.uk Continuum Observations 20,000 spectra per polarisation over 5 days with 20s integration time
15
Sascha Schediwyschediwy@physics.ox.ac.uk 21cm Neutral Hydrogen Line 10,000 spectra per polarisation over 3 days with 17s integration time
16
Sascha Schediwyschediwy@physics.ox.ac.uk Future Work Detailed analysis of observations Millisecond transient spectrometer Array beam pattern measurement Construction of 8-tile system
17
Sascha Schediwyschediwy@physics.ox.ac.uk Supplementary Slides
18
Sascha Schediwyschediwy@physics.ox.ac.uk Advantages of this Design Greater sensitivity for line surveys at higher redshift full collecting area over entire bandwidth effective area: A eff = G λ c 2 /4π
19
Sascha Schediwyschediwy@physics.ox.ac.uk
20
Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Digital System X 2 Y 2 Finite Impulse Response Band-Pass Filter Analogue to Digital Fast Fourier Transform Real Convert to Power Vector Accumulate BRAM Vector Accumulate BRAM Cast/Slice Packetise to 10GbE Cast/Slice Convert to Power X 1 Y 1
21
Sascha Schediwyschediwy@physics.ox.ac.uk Radio Frequency Interference
22
Sascha Schediwyschediwy@physics.ox.ac.uk Sidelobe Mitigation Techniques
23
Sascha Schediwyschediwy@physics.ox.ac.uk Noise Figure Measurements
24
Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Analogue Components LPDA Antenna (at boresight)
25
Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Analogue Components Receiver Board (noise temperature ≈ 35K)
26
Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Analogue Components Gain Amplifier
27
Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Analogue Components Band-Pass Filter
28
Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Analogue Components Beam-Forming Combiner
29
Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Analogue Components Coaxial Cable A and C
30
Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Analogue Components Coaxial Cable B
31
Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Analogue System Total Gain
32
Sascha Schediwyschediwy@physics.ox.ac.uk SKA Key Science Drivers
33
Sascha Schediwyschediwy@physics.ox.ac.uk SKA Document Parameters
34
Sascha Schediwyschediwy@physics.ox.ac.uk Grating Lobes Station beam pattern Antenna Element Separation Station Beam Pattern Antenna separation: dense (f < 1)nominal (f = 1)sparse (f > 1)random (f > 1) [SKA Memo 87] Beam Power
35
Sascha Schediwyschediwy@physics.ox.ac.uk Instantaneous Field of View Fully Digital Dense A. Array 120deg 10,000deg 2 18deg 250deg 2 Hybrid Dense A. Array 120deg 10,000deg 2 28deg 625deg 2 18deg 250deg 2 60m Dish + Phased Array Feed 120deg+ 10,000deg 2 + 18deg 250deg 2 Sparse High Gain A. Array 36deg 1,000deg 2 18deg 250deg 2
36
Sascha Schediwyschediwy@physics.ox.ac.uk Effective Area Effective Area: A eff (θ,φ) = G (θ,φ) λ c 2 /4π sparse limit Effective Area per Element dense up to f c = 700MHz dense up to f c = 1000MHz fcfc fcfc [SKA Memo 100] f c = 300MHz
37
Sascha Schediwyschediwy@physics.ox.ac.uk Sky Brightness Temperature T sky = 5e8 * f -2.861 + 4 SKA Memo 95 by Germán Cortés Medellín.
38
Sascha Schediwyschediwy@physics.ox.ac.uk Sensitivity SKA Phase 1 Sensitivity
39
Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Y-PolarisationX-Polarisation filter gain block 2-way 0° combiner antenna blade LNA 2-way 0° combiner amp2 coax antenna blade LNA 2-way 0° combiner amp2 coax gain block coax filter coax iADC ROACH F 10GbE GPU dispersion measure PC
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.