Download presentation
Presentation is loading. Please wait.
1
7th Biennial Ptolemy Miniconference Berkeley, CA February 13, 2007 Correctness in Causal Systems Eleftherios Matsikoudis UC Berkeley
2
Matsikoudis, Berkeley 2Ptolemy Miniconference, February 13, 2007 Causality (Informally) … is the constraint that an effect cannot precede its cause.
3
Matsikoudis, Berkeley 3Ptolemy Miniconference, February 13, 2007 Relevance Modeling and Simulation Synchronous Programming of Reactive Systems Hardware Description
4
Matsikoudis, Berkeley 4Ptolemy Miniconference, February 13, 2007 Correctness ?
5
Matsikoudis, Berkeley 5Ptolemy Miniconference, February 13, 2007 Systems.. s C s SE f A s A s B f B f M s M
6
Matsikoudis, Berkeley 6Ptolemy Miniconference, February 13, 2007 Systems.. s C s SE f A s A s B f B f M s M as Fixed-Point Equations s A = f A ( s M ; s C ) s B = f B ( s A ; s C ) s M = f M ( s B ; s SE )
7
Matsikoudis, Berkeley 7Ptolemy Miniconference, February 13, 2007 Signals T V
8
Matsikoudis, Berkeley 8Ptolemy Miniconference, February 13, 2007 Prefix Order s 1 s 2 v
9
Matsikoudis, Berkeley 9Ptolemy Miniconference, February 13, 2007 Generalized Ultrametric Distance d ( s 1 ; s 2 ) s 1 s 2
10
Matsikoudis, Berkeley 10Ptolemy Miniconference, February 13, 2007 Causal Functions µ s 1 s 2 f ( s 1 ) f ( s 2 )
11
Matsikoudis, Berkeley 11Ptolemy Miniconference, February 13, 2007 Existence of Fixed Points..? f ( s ) d e f = ( fh ¿ ; v ig i f ¿ 6 2 d oms, ; o t h erw i se.
12
Matsikoudis, Berkeley 12Ptolemy Miniconference, February 13, 2007 -Causal Functions R 0 ± ¸ ± s 1 s 2 f ( s 1 ) f ( s 2 )
13
Matsikoudis, Berkeley 13Ptolemy Miniconference, February 13, 2007 Construction of Fixed Points l i m n ! 1 f n ( s )
14
Matsikoudis, Berkeley 14Ptolemy Miniconference, February 13, 2007 Strictly Causal Functions s 1 s 2 f ( s 1 ) f ( s 2 ) ½
15
Matsikoudis, Berkeley 15Ptolemy Miniconference, February 13, 2007 Zeno
16
Matsikoudis, Berkeley 16Ptolemy Miniconference, February 13, 2007 Construction of Fixed Points f ( f ()) f () f () f ( f ()) f ( ; ) f ( f ( ; ))
17
Matsikoudis, Berkeley 17Ptolemy Miniconference, February 13, 2007 Beyond Strict Causality..
18
Matsikoudis, Berkeley 18Ptolemy Miniconference, February 13, 2007 Algebraic Loops y ( t ) = x ( t ) = x 2 ( t ) + u ( t ) K y ( t )
19
Matsikoudis, Berkeley 19Ptolemy Miniconference, February 13, 2007 x 2 ( t ) + u ( t ) K y ( t ) Algebraic Loops y ( t ) = x ( t ) = 1 : 072 0 : 268
20
Matsikoudis, Berkeley 20Ptolemy Miniconference, February 13, 2007 1 : 072 0 : 268 Algebraic Loops y ( t ) = x ( t ) = 14 : 9282 3 : 7321
21
Matsikoudis, Berkeley 21Ptolemy Miniconference, February 13, 2007 … in Simulink
22
Matsikoudis, Berkeley 22Ptolemy Miniconference, February 13, 2007 … in Ptolemy II
23
Matsikoudis, Berkeley 23Ptolemy Miniconference, February 13, 2007 Functions Strictly Causal on Orbits ½ s f ( s ) f ( f ( s ))
24
Matsikoudis, Berkeley 24Ptolemy Miniconference, February 13, 2007 Construction of Fixed Points f ( f ()) f () f () f ( f ()) f ( ; ) f ( f ( ; ))
25
Matsikoudis, Berkeley 25Ptolemy Miniconference, February 13, 2007 Conclusion Proceed with caution..
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.