Download presentation
Presentation is loading. Please wait.
1
Canadian Community Health Survey Cycle 1.1 Overview of methodological issues and more...
2
Presentation Outline &Sample Design –Target population, sample allocation and frames –Sampling strategies, oversampling of sub-populations –Data collection, response rates –Imputation –Weighting &Sampling error –Sampling variability guidelines –Variance estimation: Bootstrap re-sampling technique –CV look-up tables &Analysis –Examples –How to use the Bootvar programs
3
CCHS - Cycle 1.1 Health Region-level survey &Main objective –Produce timely cross-sectional estimates for 136 health regions &Target population –individuals living in private occupied dwellings aged 12 years old or over –Exclusions: those living on Indian Reserves and Crown Lands, residents of institutions, full-time members of the Canadian Armed Forces and residents of some remote areas &CCHS 1.1 covers ~98% of the Canadian population
4
CCHS - Sample Allocation to Provinces ProvPop # of 1st Step2nd StepTotal Size HRs500/HRX-propSample NFLD551K 6*2,7801,2304,010 PEI135K 21,0001,0002,000 NS909K 63,0002,0405,040 NB738K 73,5001,6505,150 QUE7,139K 168,00016,28024,280 ONT10,714K 3718,50023,76042,260 MAN1,114K 115,5002,5008,000 SASK990K 11*5,4002,3207,720 ALB2,697K 17*8,1506,05014,200 BC3,725K 2010,0008,09018,090 CAN29,000K 13365,83064,920130,750 * The sampling fraction in some small HRs was capped at 1 in 20 households
5
CCHS - Sample Allocation to Health Regions Pop. Size# of Mean RangeHRsSample Size Smallless than 75,00041 525 Medium75,000 - 240,00060 900 Large240,000 - 640,00025 1,500 X-Large640,000 and more7 2,500
6
CCHS - Sample Allocation to Territories Population Sample Yukon25,000850 NWT36,000900 Nunavut22,000800
7
CCHS - Sample Frame &CCHS sample selected from three frames: Area frame (Labour Force Survey structure)Area frame (Labour Force Survey structure) RDD frame of telephone numbers (Random Digit Dialling)RDD frame of telephone numbers (Random Digit Dialling) List frame of telephone numbersList frame of telephone numbers Three frames are needed for CCHS for the following reasons: 1. To yield the desired sample sizes in all health regions 2. Have a telephone data collection structure in place to quickly address provincial/regional requests for buy-in sample and/or content at any point in time 3. Optimize collection costs
8
Area frame - Sampling of households &83% of CCHS sampled households &Multistage stratified cluster sample design Stratum #1 Stratum #2 #1: Each health region is divided into strata #2: Clusters selected within strata (PPS sampling) (1st stage) #3: Dwellings selected within clusters (2nd stage)
9
RDD frame of telephone numbers Sampling of households &Elimination of non-working banks method –7% of CCHS sampled households –Telephone bank: area code + first 5 digits of a 7-digit phone # 1- Keep the banks with at least one valid phone # 2- Group the banks to encompass as closely as possible the health region areas - RDD strata 3- Within each RDD stratum, first select one bank at random and then generate at random one number between 00 and 99 4- Repeat the process until the required number of telephone numbers within the RDD stratum is reached
10
List frame of telephone numbers Sampling of households &Simple random sample of telephone numbers –10% of CCHS sampled households –Telephone companies’ billing address files and Telephone Infobase (repository of phone directories) 1- Create a list of phone numbers 2- Stratify the phone numbers by health region using the residential postal codes 3- Select phone numbers at random within a health region 4- Repeat the process until the required number of telephone numbers is reached
11
CCHS - Sampling of persons &Area frame Simple random sample (SRS) of one person aged 12 years of age or older (82% of households) SRS sample of two persons aged 12 years of age or older (18%) &RDD / List frames SRS sample of one person aged 12 years of age or older
12
CCHS - Sampling of persons Age1996LFS* CCHS groupCensussamplesimulated (all persons) sample ( only 1 person) 12-1913.213.7 8.5 20-2916.414.4 14.3 30-4430.828.7 29.1 45-6425.828.0 27.9 65 +13.815.2 20.2 * averaged distribution over 100 repetitions using the May 99 LFS sample
13
CCHS - Representativity of sub-populations To address users’ needs, two sub-population groups needed larger effective sample sizes: & &Youths (12-19 years old) – –Decision > Oversample youths by selecting a second person (12-19) in some households based on their composition & &Elderlies (65 years old and +) – –Decision > Do not oversample - let the general sample selection process address the issue by itself
14
Sampling strategy based on household composition Number of persons aged 20 or over Number of persons aged 20 or over Number0 1 2 3 4 5+ of 12-19 Number 0 1 2 3 4 5+ of 12-19 0 0-AAAAB 1 1AACCCB 2 2ACCCCC 3+ 3+ACCCCC A: Simple random sample (SRS) of one person aged 12+ B: SRS of two persons aged 12+ C: SRS of one person in the age group 12-19 and SRS of one person 20+
15
CCHS - Sample Distribution after Oversampling Age1996* CCHS* CCHS groupCensussimulated simulated samplesample ( only 1 person)( some 2 persons) 12-1913.2 8.5 14.9 20-2916.4 14.3 13.1 30-4430.8 29.1 28.1 45-6425.8 27.9 26.3 65 +13.8 20.2 17.6 * averaged distribution over 100 repetitions using the May 99 LFS sample
16
CCHS - Initial data collection plan &12 monthly samples &12 collection months + 1 Area frame !CAPI !STC field interviewers !targeted response rate: 90% !anticipated vacancy rate: 13% (09 / 2000 - 08 / 2001) + 09 / 2001 RDD / List frames !CATI !STC call centres !targeted response rate: 85% !telephone hit rate: 15-60%
17
CCHS data collection - Observed situation &Field interviewers –workload exceeded field staff capacity &Call centres –new collection infrastructure –unequal allocation of work among call centres &Descriptive paper: –« Preventing nonresponse in the Canadian Community Health Survey », Y. Béland, J. Dufour, and M. Hamel. 2001, Hull, Statistics Canada XVIII th International Symposium.
18
CCHS - Final response rates Field Call centres Total Field Call centres Total NFLD86.689.386.8 PEI87.782.684.7 NS88.889.388.8 NB88.492.488.5 QUE85.784.885.6 ONT82.879.582.0 MAN90.085.089.5 SASK87.085.486.8 ALB85.284.985.1 BC83.986.784.7 YUK79.395.682.7 NWT89.685.489.2 NUN66.334.662.5 CAN85.183.184.7
19
CCHS - Proxy interviews & Definition: When another person in the household responds to the survey on behalf of the selected person in the sample to the survey on behalf of the selected person in the sample & Acceptable in the following cases: – Out of the country for a long period of time – Mental or physical state of health – Language barrier & Usually, 2 to 3 % of proxy respondents & Because of the field problems: 6,3% – Higher rate in some health regions, for men and younger respondents &Major consequence : one third of the questionnaire is missing – Personal or sensitive type of questions not asked &Solution : imputation
20
Modules for proxy and non-proxy &Alcohol &Chronic condition &Exposure to second hand smoke &Food insecurity &General health (Q1, Q2 and Q7) &Health care utilization &Health Utility Index (HUI) &Height / Weight (Q2 and Q3) &Injuries &Restriction of activities &Smoking &Tobacco alternatives &Two-week disability &Household composition & housing &Income &Labour force &Socio-demographic characteristics &Administration &Drug use (optional) &Home care (optional)
21
Modules for non-proxy only &Alcohol dependence / abuse &Blood pressure check &Breastfeeding &Contacts with mental health professionals &Mammography &Fruit & vegetable consumption &General health (Q3-Q6, Q8-Q10) &Height / Weight (Q4 only) &PAP smear test &PSA test &Physical activities &Patient Satisfaction** &Breast examinations &Breast self examinations &Changes made to improve health &Depression &Dental visits &Distress &Driving under influence &Eye examinations &Flu shots* &Mastery &Mood &Physical check-up &Sedentary activities &Self-esteem &Sexual behaviours &Smoking cessation aids &Social support &Spirituality &Suicidal thoughts and attempts &Use of protective equipment &Work stress
22
Imputation Strategy - 5 passes & 1st pass: Health prevention modules – 3 modules imputed completely – 6 modules imputed partially (some questions only) – 2 modules not imputed & 2nd pass: Mental health modules – 6 modules imputed completely – 7 modules not imputed & 3rd pass: Sexual behaviours & 4th pass: Fruit and vegetable consumption & 5th pass: one question in the module height and weight Note that some modules and/or questions are not imputed (such as physical activity, distress, work stress, time since last flu shot, etc.)
23
Imputation Strategy & Strategy applied at each imputation pass 1. Create imputation classes – Usually: Province X Sex X Age groups X Filters – The donor has to be in the same imputation class as the recipient – Minimum donor rule : donors / (donors + recipients) >= 60% 2. Identify a list of matching variables 3. Assign a weight to each matching variable – Default weight = 1, sometimes weight = 2, 3 or more. 4. Find the nearest donor - Highest Total Weighted Match - If more than one possible donor, select one randomly from them - No imputation if no donor over a minimum number of matches
24
CCHS - Weighting and Estimation & &Estimation relates sample back to population & &MUST use weights in calculation of estimates to correctly draw conclusions about population of interest & &Sampling weight is related to the probability of selecting a person in the sample & &Persons are selected with unequal probabilities therefore have varying weights
25
CCHS - Weighting and Estimation & &Three separate weighting systems: – –Area frame design – –RDD frame design – –List frame design & &Several adjustments – – non-response (household and person) – – seasonal factor – – etc... & &Integration of the two weighting systems based on design effects and sample sizes ( n / deff ) & &Calibration using a one-dimensional poststratification adjustment of ten age/sex poststrata within each health region & &Variance estimation : bootstrap re-sampling approach – –set of 500 bootstrap weights for each individual
26
Weighting & Estimation
27
&Initial weight: Inverse of the probability of being selected
28
Weighting & Estimation &Household nonresponse: Distribute weight of nonresponding households to responding ones –Using “nonresponse classes such as HR, collection period and urban, rural/urban)
29
Weighting & Estimation &No phone lines: No coverage of hhlds without a phone line. Weights are “boosted” by a certain rate (specific to each HR) –Rates of “no phone lines” calculated using area frame data
30
Weighting & Estimation &# of people in hhld: Convert the hhld-level weight into a person-level weight (multiply by the number of people) –Depends on the # of people selected (1 or 2), and their age
31
Weighting & Estimation &Person level nonresponse: Redistribute the weight of selected person who did not respond to the ones who responded –Using classes (age, sex, # person selected, collection period, etc)
32
Weighting & Estimation &Multiple phone lines: More phone lines = higher probability of being selected –weight divided by the number of residential phone lines
33
Weighting & Estimation &Final weight: Each frame’s final weight is each representative of the total population. To create a single set of weights, they are combined through “Integration”
34
Weighting & Estimation &Integration: Combine the 2 sets of weights into one single set of weights –Based on sample size and design effect of each frame
35
Weighting & Estimation &Seasonal effect: Adjust weights so that each season contains 25% of the total population –Based on the collection period (sept-nov / dec-feb / mar-may / june - aug)
36
Weighting & Estimation &Post-stratification: Ensure the sum of weights matches the estimated population projections in each HR, for 10 age-sex groups –12-19, 20-29, 30-44, 45-64 and 65+ crossed with two sexes
37
Weighting & Estimation &Final CCHS weight: Final weight present on the CCHS master file
38
CCHS - Special Weights & &For various reasons, many other weights are produced – – Quarter 4 special weight – – PEI special weight – – Share weights (master, Q4 and PEI special) – – Link weights (master, Q4 and PEI special)
39
Sampling Error &Difference in estimates obtained from a sample as compared to a census &The extent of this error depends on four factors: –sample size –variability of the characteristic of interest –sample design –estimation method &Generally, the sampling error decreases as the size of the sample increases
40
Sampling Error &Measures of precision associated to an estimate –Variance –Standard deviation (square root of the variance) –95% confidence interval (estimate ± 1.96 x standard deviation) –Coefficient of variation Standard deviation of estimate x 100% / estimate itselfStandard deviation of estimate x 100% / estimate itself CV allows comparison of precision of estimates with different scalesCV allows comparison of precision of estimates with different scales –Examples: 24% of population are daily smokers, std dev. = 0.003 24% of population are daily smokers, std dev. = 0.003 > CV=0.003/0.24 x 100%=1.25% > 95% CI: 0.240 ± 1.96 x 0.003 : {0.234 ; 0.246 }
41
Sampling Variability Guidelines Type of estimate CVGuidelines Acceptable 0.0-16.5 General unrestricted release Marginal 16.6-33.3 General unrestricted release but with warningcautioning users of the high sampling variablitity. Should be identified by letter E. Unacceptable> 33.3 No release. Should be flagged with letter F. Should be flagged with letter F.
42
Sampling Error &Measuring sampling error for complex sample designs: –Simple formulas not available –Most software packages do not incorporate design effect (and weights adjustments) appropriately for calculations –Solution for CCHS: the Bootstrap re-sampling method
43
Bootstrap method &Principle: –You want to estimate how precise is your estimation of the number of smokers in Canada –You could draw 500 totally new CCHS samples, and compare the 500 estimations you would get from these samples. The variance of these 500 estimations would indicate the precision. –Problem: drawing 500 new CCHS samples is $$$ –Solution: Assuming your sample is representative of the population, sample 500 new subsamples and compute new sampling weights for each subsample.
44
Bootstrap method T = 40 Var = (B i - B) 2 / 499 &How CCHS Bootstrap weights are created (the secret is now revealed!!!)
45
Bootstrap Method &How Bootstrap replicates are built? lThe “real” recipe 1- Subsample clusters (SRS) within a design stratum 2- Apply (initial design) weight 3- Adjust (boost) weight for selection of n-1 among n 4- Apply all standard weight adjustments (nonresponse, integration, share, etc.) 5- Post-stratification to population counts lThe bootstrap method intends to mimic the same approach used for the sampling and weighting processes
46
Bootstrap Method &Sampling weight versus Bootstrap weights –Sampling weight used to compute the estimation of a parameter (e.g.: number of smokers) –Bootstrap weights used to compute the precision of the estimation (e.g.: the CV of the number of smokers estimation)
47
Bootstrap Method &The process of variance estimation is divided into two phases: ìCalculation of bootstrap weights Need to be produced only onceNeed to be produced only once Done by Statistics Canada methodologistsDone by Statistics Canada methodologists
48
Bootstrap Method íVariance estimation using bootstrap weights Done by anyone - internally or externallyDone by anyone - internally or externally Bootstrap weights files distributed with all CCHS files, except Public-Use Microdata File (PUMF)Bootstrap weights files distributed with all CCHS files, except Public-Use Microdata File (PUMF) –Bootstrap weights are in a separate file (match using IDs) –Not for PUMF because bootstrap weights reveal confidential info –PUMF users must proceed through remote access to get ‘ exact ’ variances or use the CV look-up tables
49
Bootstrap Method &Variance estimation using bootstrap weights SAS and SPSS (beta) macro programs provided to users (BOOTVAR)SAS and SPSS (beta) macro programs provided to users (BOOTVAR) Allow users to perform a few statistical analysis (totals, proportions, differences of proportions and regression analysis)Allow users to perform a few statistical analysis (totals, proportions, differences of proportions and regression analysis) Fully documented with examplesFully documented with examples Bootstrap hands-on workshopBootstrap hands-on workshop
50
How to use the Bootvar program STEP #1 Create your ‘‘analytical file” &Read CCHS data file &Prepare the necessary dummy variables &Keep only the necessary variables &Perform the analysis to obtain the point estimates (not essential but recommended) STEP #2 Compute your variances using Bootvar &Specify the location of the files: sYour “analytical file” sBootstrap weights file &Specify the level of geography &Specify the analysis to perform sTotal, proportion, diff. of prop. sRegression (linear & logistic) sGeneralized linear model
51
How to use the Bootvar program Statistical analysis ìUsing the NPHS cycle 3 (1998) cross-sectional dummy data, estimate the number of ontarians aged 12, by gender, who perceive themselves as being: - in poor or fair health, - in good health, - in very good health, - in excellent health. - Compute 95% confidence interval for each point estimate using the Bootvar program.
52
Necessary variables for the analysis Self-perceived health (GHC8DHDI) 0 = poor, 1 = fair, 2 = good, 3 = very good, 4 = excellent, 9 = not stated Age (DHC8_AGE) Sex (DHC8_SEX) >= 12 1 = male, 2 = female Province (PRC8_CUR)Sampling weight (WT68) 35 = Ontario Record identifier for the household (REALUKEY) Number identifying the person in the household (PERSONID)
53
Basic theoritical notions for estimating a proportion Example of a data file IDWeight Sex Asthma Asthma_id A 50 M YES 1 B 60 M NO 0 C 50 M NO 0 D 70 M YES 1 E 50 M NO 0 ( Weight A + Weight D ) ( Weight A + Weight D ) (Weight A +Weight B +Weight C +Weight D +Weight E ) (Weight A +Weight B +Weight C +Weight D +Weight E ) = (50 + 70) / (50 + 60 +50 + 70 + 50) * 100 = 120 / 280 * 100 = 43% = (50 + 70) / (50 + 60 +50 + 70 + 50) * 100 = 120 / 280 * 100 = 43% %(asthma_men) = __________________________________________ * 100
54
Little trick for the statistical analysis Create your univariate dummy variable : lMen = 1,0(men) lGood health = 1,0(good) lMen in good health : mgood = men * good men * good= mgood men * good= mgood 100 111 000 010
55
Results of the statistical analysis Self-perceived health of ontarians aged 12 or older by gender Self-perceived health of ontarians aged 12 or older by gender in 1998 in 1998 # (‘000) 95% CI % 95% CI # (‘000) 95% CI % 95% CIMen - Poor / fair391(330 ; 452)8.4(7.1 ; 9.8) - Poor / fair391(330 ; 452)8.4(7.1 ; 9.8) - Good1,106(1,007 ; 1,204)23.9(21.7 ; 26.0) - Good1,106(1,007 ; 1,204)23.9(21.7 ; 26.0) - Very good1,764(1,648 ; 1,880)38.1(35.6 ; 40.6) - Very good1,764(1,648 ; 1,880)38.1(35.6 ; 40.6) - Excellent1,373(1,268 ; 1,479)29.6(27.4 ; 31.9) - Excellent1,373(1,268 ; 1,479)29.6(27.4 ; 31.9)Women - Poor / fair480(409 ; 551)9.9(8.5 ; 11.4) - Poor / fair480(409 ; 551)9.9(8.5 ; 11.4) - Good1,258(1,151 ; 1,364)26.1(23.9 ; 28.3) - Good1,258(1,151 ; 1,364)26.1(23.9 ; 28.3) - Very good1,846(1,726 ; 1,965)38.2(35.8 ; 40.7) - Very good1,846(1,726 ; 1,965)38.2(35.8 ; 40.7) - Excellent 1,243(1,138 ; 1,348)25.8(23.6 ; 27.9) - Excellent 1,243(1,138 ; 1,348)25.8(23.6 ; 27.9)
56
Why use the Bootstrap method? Other techniques: &Taylor –Need to define a linear equation for each statistic examined &Jacknife –Number of replicates depends on the number of strata (large number of strata makes it impossible to disseminate)
57
Why use the Bootstrap method? BOOTSTRAP &more user-friendly when there is a large number of strata &sets of 500 bootstrap weights can be distributed to data users &Recommended (over the jackknife) for estimating the variance of nonsmooth functions like quantiles, LICO &Official reference: –“Bootstrap Variance Estimation for the National Population Health Survey”, D. Yeo, H. Mantel, and T.-P. Liu. 1999, Baltimore, ASA Conference.
58
CV Look-up Tables &Alternative to bootstrap &Approximate &Can only be used for categorical variables, and for estimations of totals and proportions &Available for every health region, province and Canada &Provided with PUMF and Share file for some subpopulations
59
CV Look-up Tables—Example National Population Health Survey ‑ 1996/1997 Approximate Sampling Variability Tables for Ontario Health Area:OTTAWA CARLETON ‑ Selected members NUMERATOR OF ESTIMATED PERCENTAGE PERCENTAGE ('000) 0.1% 1.0% 2.0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0% 35.0% 40.0% 50.0% 70.0% 90.0% 1 ******** 48.6 48.4 47.6 46.4 45.0 43.7 42.3 40.9 39.4 37.8 34.5 26.8 15.5 2 ******** 34.4 34.2 33.7 32.8 31.9 30.9 29.9 28.9 27.9 26.8 24.4 18.9 10.9 3 ******** 28.1 27.9 27.5 26.8 26.0 25.2 24.4 23.6 22.7 21.9 19.9 15.5 8.9 4 ******** 24.3 24.2 23.8 23.2 22.5 21.9 21.2 20.4 19.7 18.9 17.3 13.4 7.7 5 ******** 21.7 21.6 21.3 20.7 20.1 19.5 18.9 18.3 17.6 16.9 15.5 12.0 6.9 6 ******** 19.8 19.7 19.4 18.9 18.4 17.8 17.3 16.7 16.1 15.5 14.1 10.9 6.3 7 ******** 18.4 18.3 18.0 17.5 17.0 16.5 16.0 15.5 14.9 14.3 13.1 10.1 5.8 8 **************** 17.1 16.8 16.4 15.9 15.5 15.0 14.5 13.9 13.4 12.2 9.5 5.5 9 **************** 16.1 15.9 15.5 15.0 14.6 14.1 13.6 13.1 12.6 11.5 8.9 5.2 10 **************** 15.3 15.1 14.7 14.2 13.8 13.4 12.9 12.5 12.0 10.9 8.5 4.9 ... 300 **************************************************************************************** 2.0 1.5 0.9 350 **************************************************************************************** 1.8 1.4 0.8 400 ************************************************************************************************ 1.3 0.8 450 ************************************************************************************************ 1.3 0.7 500 ************************************************************************************************ 1.2 0.7 NOTE: FOR CORRECT USAGE OF THESE TABLES PLEASE REFER TO MICRODATA DOCUMENTATION
60
Another example using the Bootvar program Statistical analysis íUsing the NPHS cycle 3 (1998) cross-sectional dummy data, determine whether or not the number of men aged 12 or older who perceive themselves as being in excellent health in Ontario is statistically different (at level =5%) than the number of women.
61
Basic theoritical notions for performing a Z-test M_excel = estimated proportion of men in excellent health F_excel = estimated proportion of women in excellent health Hypothesis test:H 0 : M_excel = F_excel H 1 : M_excel F_excel At level = 0,05, we conclude H 0 if | z | <= 1.96 We conclude H 1 otherwise. Z = ( M_excel - F_excel ) sd (M_excel-F_excel) sd (M_excel-F_excel) We use the section “difference of proportions” of the BOOTVAR program to estimate the standard deviation of the difference between the two estimates. __________________
62
Results M_excel = 29.64% ; F_excel = 25.75% ; sd(M_excel-F_excel) = 1.62 Z = ( M_excel - F_excel ) = (29.64 - 25.75) = 3.89 = 2.40 sd (M_excel-F_excel) 1.62 1.62 sd (M_excel-F_excel) 1.62 1.62 At = 0,05 level, we conclude H 1 because z = 2.40 > 1.96. We can then conclude that among the ontarians aged 12 or older there is a statistical difference between men and women with regard to the caracteristic “self-perceived health = excellent”. _____________________________
63
CCHS - Data Dissemination Strategy & &Wide range of users and capacity – –136 health regions – –13 provincial/territorial Ministries of Health – –Health Canada and CIHI – –Internal STC analysts – –Academics – –Others & &Data products – –Microdata – –Analytical products (Health Reports, How Healthy are Canadians, etc…) – –Tabular statistics (ePubs, Cansim II, community profiles, etc…) – –Client support (head and regional offices, CCHS website, workshops, etc…)
64
CCHS - Access to microdata & &Master file – –all records, all variables Statistics Canada university research data centres remote access & &Share / Link files – –respondents who agreed to share / link provincial/territorial Ministries of Health health regions (through the STC third-party share agreement) & &Public Use Microdata File (PUMF) – –all records, subset of variables with collapsed response categories free for 136 health regions cost recovery for others
65
CCHS - Overview of Cycle 1.2 & &Produce provincial cross-sectional estimates from a sample of 30,000 respondents & &Area frame sample only / one person per household & &CAPI only & &90 minute in-depth interviews on mental health and well-being based on WMH2000 questionnaire & &Scheduled to begin collection in May 2002
66
CCHS - Future Plans & &Same two-year cycle approach: – –health region level survey starting in January 2003 – –provincial level survey starting in January 2004 & &New consultation process with provincial and regional authorities & &Flexible sample designs (adaptable to regional needs) & &Development of an in-depth nutrition focus content (Cycle 2.2)
67
CCHS Web site www.statcan.ca/health_surveyswww.statcan.ca/enquetes_santé
68
Contacts in Methodology &Yves Béland: yves.beland@statcan.ca &François Brisebois: francois.brisebois@statcan.ca
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.