Presentation is loading. Please wait.

Presentation is loading. Please wait.

Decision making. ? Blaise Pascal 1623 - 1662 Probability in games of chance How much should I bet on ’20’? E[gain] = Σgain(x) Pr(x)

Similar presentations


Presentation on theme: "Decision making. ? Blaise Pascal 1623 - 1662 Probability in games of chance How much should I bet on ’20’? E[gain] = Σgain(x) Pr(x)"— Presentation transcript:

1 Decision making

2 ?

3 Blaise Pascal 1623 - 1662 Probability in games of chance How much should I bet on ’20’? E[gain] = Σgain(x) Pr(x)

4 Decisions under uncertainty Maximize expected value (Pascal) Bets should be assessed according to

5 Decisions under uncertainty The value of an alternative is a monotonous function of the Probability of reward Magnitude of reward

6 Do Classical Decision Variables Influence Brain Activity in LIP? LIP

7 Varying Movement Value Platt and Glimcher 1999

8

9

10

11 What Influences LIP? Related to Movement Desirability Value/Utility of Reward Probability of Reward

12 Varying Movement Probability

13

14

15 What Influences LIP? Related to Movement Desirability Value/Utility of Reward Probability of Reward

16

17 Decisions under uncertainty Neural activity in area LIP depends on: Probability of reward Magnitude of reward

18 Dorris and Glimcher 2004 Relative or absolute reward?

19 ?

20 $X $Y $Z

21 $A $B $C $D $E

22 Consider a set of alternatives X and a binary relation on it,, interpreted as “preferred at least as”. Consider the following three axioms: C1. Completeness: For every C2. Transitivity: For every C3. Separability Maximization of utility

23 Theorem: A binary relation can be represented by a real-valued function if and only if it satisfies C1-C3 Under these conditions, the function u is unique up to increasing transformation (Cantor 1915)

24 A face utility function?

25 In there an explicit representation of ‘value’ of a choice in the brain?

26 Neurons in the orbitofrontal cortex encode value Padoa-Schioppa and Assad, 2006

27

28

29

30 Examples of neurons encoding the chosen value

31 A neuron encoding the value of A

32 A neuron encoding the value of B

33 A neuron encoding the chosen juice taste

34 Encoding takes place at different times post-offer (a, d, e, blue), pre-juice (b, cyan), post-juice (c, f, black)

35 How does the brain learn the values?

36 The computational problem The goal is to maximize the sum of rewards

37 The computational problem The value of the state S 1 depends on the policy If the animal chooses ‘right’ at S 1,

38 How to find the optimal policy in a complicated world?

39 If values of the different states are known then this task is easy

40 How to find the optimal policy in a complicated world? If values of the different states are known then this task is easy How can the values of the different states be learned?

41 V(S t ) = the value of the state at time t r t = the (average) reward delivered at time t V(S t+1 ) = the value of the state at time t+1

42 where is the TD error. The TD (temporal difference) learning algorithm

43 Schultz, Dayan and Montague, Science, 1997

44 CS Reward Before trial 1: 1 234 5 678 9 In trial 1: no reward in states 1-7 reward of size 1 in states 8

45 CS Reward Before trial 2: 1 234 5 678 9 In trial 2, for states 1-6 For state 7,

46 CS Reward Before trial 2: 1 234 5 678 9 For state 8,

47 CS Reward Before trial 3: 1 234 5 678 9 In trial 2, for states 1-5 For state 6,

48 CS Reward 1 234 5 678 9 For state 7, Before trial 3: For state 8,

49 CS Reward After many trials 1 234 5 678 9 Except for the CS whose time is unknown

50

51 Schultz, 1998

52 Bayer and Glimcher, 1998 “We found that these neurons encoded the difference between the current reward and a weighted average of previous rewards, a reward prediction error, but only for outcomes that were better than expected”.

53 Bayer and Glimcher, 1998


Download ppt "Decision making. ? Blaise Pascal 1623 - 1662 Probability in games of chance How much should I bet on ’20’? E[gain] = Σgain(x) Pr(x)"

Similar presentations


Ads by Google