Download presentation
Presentation is loading. Please wait.
1
Determination of optical and microphysical Properties of Water Clouds
2
LCRS 2004 Retrieved Parameters Cloud optical thickness Cloud effective droplet radius Cloud top height Liquid water path Thermodynamic phase
3
LCRS 2004 Retrieved Parameters – Mathematical formulation Effective cloud droplet radiusOptical thickness
4
LCRS 2004 Basic concept of optical retrievals reflectance / emission of a cloud microphysical cloud parameters
5
LCRS 2004 Reflection Function = ratio of reflected light intensity of a cloud to that of an ideal Lambertian white reflector for Lambertian ideally white reflector Clouds are not a Lambertian reflector geometric dependence of R transmission of incident radiation
6
LCRS 2004 Reflection Function – Geometric Dependence Exact radiative transfer code (Mishchenko et al. 1999) using Gamma size distribution: 1
7
LCRS 2004 Reflection Function – Transmission = reflection function of a semi-infinite, non-abs. cloud = global transmittance of a cloud = asymmetry parameter = escape functions VIS: Reflection reduces due to transmission
8
LCRS 2004 Dependence of R VIS on a ef Reflection function of clouds in VIS depends strongly on optical thickness depends weakly on a ef (Kokhanovsky et al. 2003)
9
LCRS 2004 Reflection Function – NIR NIR: Reflection reduces due to transmission and weak absorption Satellite signal is composed of a) solar component and b) thermal component = reflection function of a semi-infinite cloud = diffusion exponent = escape functions
10
LCRS 2004 Dependence of R NIR on a ef Reflection function of clouds in NIR (weakly absorbing) depends strongly on a ef depends moderately on optical thickness (Kokhanovsky et al. 2003)
11
LCRS 2004 Dependence of R NIR a ef Large droplets Volume is dominant parameter Absorption > Reflection Small droplets Cross-section is dominant parameter Reflection > Absorption
12
LCRS 2004 Dependence of R on a ef for VIS and NIR Sensor Signal Parameter VISNIR very strongmoderate a ef weakvery strong
13
LCRS 2004 Dependence of Radiance Density on a ef Retrieval of cloud parameters is possible with VIS / NIR bands of satellite sensors
14
LCRS 2004 Examples of suitable systems – Meteosat-8 SEVIRI Meteosat-8 Eumetsat geostationary orbit (0°) launch: 28.08.2002 operational since 4/2004 available at least up to 2012 SEVIRI Sensor repetition: 15 minutes 12 bands: 2 VIS (3km) 2 NIR (3km) 7 WV/IR (3km) 1 HRV (1km)
15
LCRS 2004 Examples of suitable systems – Terra-/Aqua-MODIS Terra & Aqua NASA (EOS) sun-synchronous orbit Terra launch 1999-12-18 EOS-AM (10:30 south) Aqua launch 2002-05-04 EOS-PM (13:30 north) MODIS Sensor 36 bands (0,62 – 14,39 µm) resolution 1km 2 VIS (250m) 5 VIS/NIR (500m)
16
LCRS 2004 Retrieval Concepts Look-up table approach = satellite signal is iteratively lined with pre-calculated look-up tables connecting cloud microphysical parameters with measured radiance density in VIS/NIR bands. GTR (T. Nakajima, T. Y. Nakajima, Kawamoto) NASA MOD06 (Platnick, King, Ackerman, Menzel, Baum, Riédi, Frey) Semianalytical approach = satellite signal is used for the solution of a simplified, single semi- analytical equation which is derived from exact radiative transfer equations. SACURA (Kokhanovsky)
17
LCRS 2004 Example 1 - GTR Look-up table approach GTR retrieval T. Nakajima, T. Y. Nakajima, Kawamoto
18
LCRS 2004 GTR – Extraction of Radiance Density from Signal VIS NIR ground reflection cloud thermal componentground thermal component
19
LCRS 2004 GTR - Preparation of LUTs Grid system of LUTs 1.,2.,4.,6.,9.,14.,20.,30.,50.,70. 2.,4.,6.,9.,12.,15.,20.,25.,30.,35.,40. 0.,5.,10.,20.,30.,35.,40.,45.,50.,55.,60. 0.,5.,10.,20.,30.,35.,40.,45.,50.,55.,60.,65.,70. 0.,10.,20.,30.,40.,50.,60.,70.,80.,90.,100.,110.,120.,130.,140.,150.,160.,170.,180. Liquid water content for several classified cloud types Cu, Sc0.300 g/m 3 As, Ac0.250 g/m 3 Ci, Cs, Cc0.014 g/m 3 Ns0.300 g/m 3 Cb0.393 g/m 3 St1.540 g/m 3 Pruppacher & Klett 1978, Heymsfield 1993
20
LCRS 2004 GTR - Preparation of additional datasets Cloud-free albedo maps (monthly mean – minimum map) VIS and NIR (solar radiation only) band 6S code (Tanré 1990) Cloud-free background BTT map (actual scene) Multiple regression function Latitude Longitude Height above sea level (DGM) Temperature Vertical profiles (actual scene) MM5, Sounding data, etc. Temperature Humidity Pressure
21
LCRS 2004 GTR – Additional datasets Satellite data VIS / NIR bands Cloud-free albedo maps (6S) Cloud-free ground BBT map Radiative-Transfer-Calculation Radiance Density / BBT vs. microphysical Parameters Iteration Satellite data - LUTs Actual Atmosphere Profiles MM5 Sounding data
22
LCRS 2004 GTR – Flow of Analysis (Kawamoto et al. 2001)
23
LCRS 2004 GTR – Calculation of w, D and Z Liquid water path Geometrical thickness Cloud-top height from vertical profile data
24
LCRS 2004 GTR – Input Satellite Data Radiance density 0.6µm Radiance density 3.9µm [W/m 2 /µm/sr] [W/m 2 /µm/sr]
25
LCRS 2004 GTR - Results Terra-MODIS, 2002-08-05, 11:05 GMT Re[µm] 11µm T[K]
26
LCRS 2004 Example 2 - SACURA Semianalytical approach SACURA retrieval A. A. Kokhanovsky
27
LCRS 2004 SACURA – Retrieval of a ef & for 2 band algorithm 01 VIS NIR can be calculated by simple approximation equations
28
LCRS 2004 SACURA – Retrieval of a ef & for 2 band algorithm 02 from VIS: from scaled optical thickness: from other simplifications: Substitution in R 2 retrieves a ef with a single transcendent equation is retrieved subsequently with equation above
29
LCRS 2004 SACURA - Results Terra-MODIS, 2002-08-05, 11:05 GMT Re[µm] 11µm T[K]
30
LCRS 2004 Error Estimation Theoretical Errors
31
LCRS 2004 Error Estimation - SACURA Error of R due to simplification of semi-analytical equations (Kokhanovsky et al. 2003)
32
LCRS 2004 Error Estimation - GTR Error of retrieved parameters when applied to simulated satellite signals using [5;10;15] at a ef 10µm and a ef [6;10;16µm] at = 10. (Kawamoto et al. 2001)
33
LCRS 2004 Intercomparison Intercomparison SACURA vs. GTR. vs MOD06
34
LCRS 2004 Intercomparison SACURA vs. GTR vs. MOD06 Terra-MODIS, 2001-07-18, 15:30 GMT a ef [µm] GTR SACURA MOD06
35
LCRS 2004 Intercomparison SACURA vs. GTR vs. MOD06 a ef [µm] GTR SACURA MOD06
36
LCRS 2004 Intercomparison SACURA vs. GTR vs. MOD06 - a ef Terra-MODIS, 2001-07-18, 15:30 GMT
37
LCRS 2004 Intercomparison SACURA vs. GTR vs. MOD06 - Terra-MODIS, 2001-07-18, 15:30 GMT
38
LCRS 2004 Intercomparison SACURA vs. GTR vs. MOD06 – Freq. Terra-MODIS, 2001-07-18, 15:30 GMT
39
LCRS 2004 Conclusion Retrieval of a ef and from satellite data is possible Retrieval is one realization of the reality LUT and asymptotic theory approaches have errors due to Inhomogeneous clouds Errors in additional datasets, partly cloud covered pixels etc. Errors of asymptotic approach are negligible for optically thick clouds Asymptotic equations can be simplified with negligible errors for > 5
40
LCRS 2004 Outlook We will join efforts to implement a new version combining both approaches > 10 semi-analytical equations < 5 LUT approach 5 < < 10 one of both but we will see…. Optimized algorithm with regard of minimization of computer time and minimization of errors
41
LCRS 2004 Acknowledgments Alexander A. Kokhanovsky
42
LCRS 2004 Thank you The End
43
LCRS 2004 Intercomparison SACURA vs. GTR vs. MOD06 Terra-MODIS, 2002-08-10, 09:45 GMT a ef [µm] GTR SACURA MOD06
44
LCRS 2004 Intercomparison SACURA vs. GTR vs. MOD06 - a ef Terra-MODIS, 2002-08-10, 09:45 GMT
45
LCRS 2004 Intercomparison SACURA vs. GTR vs. MOD06 - Terra-MODIS, 2002-08-10, 09:45 GMT
46
LCRS 2004 Intercomparison SACURA vs. GTR vs. MOD06 – Freq. Terra-MODIS, 2002-08-10, 09:45 GMT
47
LCRS 2004 Intercomparison SACURA vs. GTR vs. MOD06 – Delta Terra-MODIS, 2002-08-10, 09:45 GMT
48
LCRS 2004 SACURA – Lambert surface reflection VIS Large optical thickness direct solar light term can be neglected NIR can be calculated by simple approximation equations
49
LCRS 2004 Error Estimation - SACURA Error of retrieved parameters due to measurement errors and (Kokhanovsky et al. 2003)
50
LCRS 2004 Geometry
51
LCRS 2004 Compatibility SEVIRI – MODIS SEVIRIMODIS VIS 0,6Kanal 1 VIS 0,8Kanal 15 NIR 1,6Kanal 6 NIR 3,9Kanal 21 WV 6,2Kanal 27 WV 7,3Kanal 28 IR 8,7Kanal 29 IR 9,7Kanal 30 IR 10,8Kanal 31 IR 12,0Kanal 32 IR 13,4Kanal 33 / 34 HRV
52
LCRS 2004 GTR - Preparation of LUTs Grid system of LUTs 1.,2.,4.,6.,9.,14.,20.,30.,50.,70. 2.,4.,6.,9.,12.,15.,20.,25.,30.,35.,40. 0.,5.,10.,20.,30.,35.,40.,45.,50.,55.,60. 0.,5.,10.,20.,30.,35.,40.,45.,50.,55.,60.,65.,70. 0.,10.,20.,30.,40.,50.,60.,70.,80.,90.,100.,110.,120.,130.,140.,150.,160.,170.,180. Liquid water content for several classified cloud types Cu, Sc0.300 g/m 3 As, Ac0.250 g/m 3 Ci, Cs, Cc0.014 g/m 3 Ns0.300 g/m 3 Cb0.393 g/m 3 St1.540 g/m 3 ISCCP, Rossow et al. 1996 Pruppacher & Klett 1978, Heymsfield 1993
53
LCRS 2004 Retrieved Parameters Cloud optical thickness [1... 70] resp. [5...150] Cloud effective droplet radius[1...40 µm] resp. [1...140µm] Cloud top height [0.1...10 km] Liquid water path […50...200…g/m 2 ] Thermodynamic phase (ice, water, mixed clouds)
54
LCRS 2004 Intercomparison SACURA vs. GTR vs. MOD06 – Delta Terra-MODIS, 2001-07-18, 15:30 GMT
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.