Download presentation
1
Chapter 9 Sections:9.2, 9.3, 9.4, 9.5
2
Chapter 9: Phase Diagrams
Why study? One of the reason why a knowledge and understanding of phase diagrams is important to the engineers related to the design and control of heat treating processes. Some properties are functions of their microstructures, and, consequently, of their thermal histories.
3
Definitions and Basic Concepts
Components : Pure metals and/or compounds of which an alloy is composed Example: in a copper-zinc brass, the components are Cu and Zn. System First meaning: refer to a specific body of material under consideration ( e.g., a ladle of molten steel) Second meaning: relate to the series of possible alloys consisting of the same components, but without regard to alloy composition (e.g., the iron-carbon system) Solid solution: Consists of atoms of at least two different types Solute an element or compound present in a minor concentration Solvent an element or compound in greater amount; host atoms. Solute atoms occupy either substitutional or interstitial positions in the solvent lattice Crystal structure of the solvent is maintained
4
9.2 Solubility Limit Solubility Limit: The maximum concentration of a solute atoms that may dissolve in the solvent to form a solid solution at some specific temperature. The addition in excess results in the formation of another solid solution or compound that has a distinctly different composition. Example: Sugar-Water (C12H22O11-H2O) system Initially, as sugar added to water, a solution of syrup forms. As more sugar is added, solution becomes more concentrated Solution becomes saturated with sugar Solubility limit is reached Not capable to dissolving more further addition simply settle to the bottom System now consists of two separate substances: A sugar-water syrup liquid solution, and Solid crystals of undissolved sugar
6
9.3 Phases Phase: defined as a homogeneous portion of a system that has uniform physical and chemical characteristics. Every pure material is considered to be a phase Also every solid, liquid, and gaseous solution e.g., syrup solution is one phase, and solid sugar is another If more than one phase is present, it is not necessary that there be difference in both physical and chemical properties: A disparity in one or both is sufficient e.g., water and ice in a container ( two phase, identical chemically) When a substance can exist in two or more polymorphic forms (e.g. having both FCC abd BCC) each structure is a separate phase because of difference in physical properties.
7
A single-phase system is termed “homogeneous”
Systems composed of two or more phases are termed “mixture” or heterogeneous systems”. Most metallic alloys, ceramics, polymeric, and composite systems are heterogeneous. Ordinarily, in multiphase systems The phases interact such that the property is different and more attractive than individual phases.
8
9.4 Microstructure Physical properties and mechanical behavior depend on the microstructure. In metal alloys, microstructure is characterized by Number of phases present Their proportions The manner they are distributed or arranged The microstructure of an alloy depends on such variables as Alloying elements present Their concentrations The heat treatment Microstructure studies: surface preparation (Polishing and etching) For two phase alloys, one phase may appear light and other dark
9
9.5 Phase Equilibria Free energy is a function of the internal energy of a system, and also of the randomness or disorder of the atoms or molecules (or entropy). A system is at equilibrium if its free energy is at a minimum under some specified combination of temperature, pressure, and composition. In macroscopic sense, this means that the characteristics of the system do not change with time but persist indefinitely The system is stable A change in temperature, pressure, and/or composition in equilibrium increase in free energy another equilibrium state whereby the free energy is lowered.
10
Phase equilibrium refers to equilibrium as it applied to systems in which more than one phase may exist. Example: Sugar-water syrup is contained in a closed vessel solution is in contact with solid sugar at 20oC If system is in equilibrium, Composition of syrup is 65wt% C12H22O11-35wt% H2O (Fig 9.1) Amount and composition of syrup and sugar will remain constant If temperature is raised to 100oC Equilibrium is temporarily upset Solubility limit of sugar has increased to 80 wt% Some of the solid sugar will dissolve until new equilibrium is reached
11
Metastable state: Nonequilibrium state A state of equilibrium is never completely achieved because the rate of approach to equilibrium is extremely slow Common in many metals or solid solutions Persist indefinitely with imperceptible changes with time. Metastable structure: More practical than equilibrium Some steel and aluminum rely on this for heat treatment designing
12
Chapter 9 Sections: 9.6
13
Equilibrium Phase Diagrams
Represents the relationships between temperature and the compositions and the quantities of phases at equilibrium. Also known as phase, equilibrium or constitutional diagram A binary alloy is one that contains two components. Temperature and composition are the variable parameters for binary alloys. Of more than two components, phase diagrams become extremely complicated and difficult to represents
14
9.6 Binary Isomorphous systems
Phase diagram of the copper-Nickel system is shown in Fig 9.2a. Ordinate Temperature Abscissa composition Composition ranges from 0 wt% Ni (100 wt% Cu) to 100 wt% Ni (0 wt% Cu) Three different phase regions, or fields, appear An alpha (a) field A liquid (L) field A two-phase (a+L) field
15
Liquid L: homogeneous liquid solution composed of both copper and nickel
a phase: a substitutional solid solution consisting of both Cu and Ni atoms, and having an FCC crstal structure. Isomorphous: complete liquid and solid solubility of two components Copper-Nickel system is Isomorpous At temperatures below about 1080oC, mutually soluble in solid state for all compositions Complete solubility is due to same crystal structure (FCC), nearly identical atomic radii and electronegativities, and similar valences
16
Nomenclature For metallic alloys, solid solutions are designated by a, b, g, etc. Liquidus line: liquid phase at all temperature and composition above this line Solidus line: solid phase below this line at all temperatute and composition Liquidus and solidus lines intersect at two extreme points Correspond to melting temperature of pure components Copper (1085oC) and Nickel (1453oC) Heating of pure copper Moving vertically on left-temperature axis Remains solid until its melting temperature is reached No further heating possible, until this transformation is complete
17
For any composition other than pure components
Melting phenomenon occurs over the range of temperature between the solidus and liquidus lines Both solid a and liquid will be in equilibrium within this range
18
Interpretation of Phase Diagrams
For binary system of known composition and temperature that is in equilibrium, at least three kinds of information are available: The phases that are present The composition of these phases The % or fraction of the phases 1.0 Phases present Relatively simple Example (refer to Fig 9.2a), 60 wt% Ni-40 wt% Cu at 1100oC Point A a phase 35 wt% Ni-65 wt% Cu at 1250oC Point B a + liquid phases
19
• Tell us about phases as function of T, Co, P. • For this course:
PHASE DIAGRAMS • Tell us about phases as function of T, Co, P. • For this course: --binary systems: just 2 components. --independent variables: T and Co (P = 1atm is always used). • Phase Diagram for Cu-Ni system Adapted from Fig. 9.2(a), Callister 6e. (Fig. 9.2(a) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH (1991). 5
20
PHASE DIAGRAMS: # and types of phases
• Rule 1: If we know T and Co, then we know: --the # and types of phases present. • Examples: Cu-Ni phase diagram Adapted from Fig. 9.2(a), Callister 6e. (Fig. 9.2(a) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH, 1991). 6
21
PHASE DIAGRAMS: composition of phases
• Rule 2: If we know T and Co, then we know: --the composition of each phase. Cu-Ni system • Examples: Adapted from Fig. 9.2(b), Callister 6e. (Fig. 9.2(b) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH, 1991.) 7
22
PHASE DIAGRAMS: weight fractions of phases
• Rule 3: If we know T and Co, then we know: --the amount of each phase (given in wt%). Cu-Ni system • Examples: = 27wt% Adapted from Fig. 9.2(b), Callister 6e. (Fig. 9.2(b) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH, 1991.) 8
23
• Sum of weight fractions:
THE LEVER RULE: A PROOF • Sum of weight fractions: • Conservation of mass (Ni): • Combine above equations: • A geometric interpretation: 9
24
Composition need to be specified in terms of only one of the constituents
For example, composition of Ni is used Identical results if composition of Cu is used Co = 35 wt% Ni Ca = 42.5 wt% Ni CL = 31.5 wt% Ni WL = ( 42.5 – 35) / (42.5 – 31.5) = 0.68 Wa = (35 – 31.5) / (42.5 – 31.5) = 0.32 Volume fraction: See equations 9.5 – 9.7
25
Volume Fractions
26
Development of Microstructure in Isomorphous alloys -- Equilibrium Cooling
35 wt% Ni-65wt% Cu as cooled from 1300oC Cooling very slowly phase equilibrium is maintained Cooling Moving down At 1300oC, completely liquid At b (1260oC), solidification starts At d (1220oC), solidification completes
27
Development of Microstructure -- Non-Equilibrium Cooling
Extremely slow cooling not valid Temperature change readjustment in composition diffusional processes Diffusion rates are low for the solid phase and, for both phases, decrease with diminishing temperature Practical solidification processes, cooling rates are much too rapid to allow these compositional readjustments and maintenance of equilibrium different microstructure develops
29
At b’, a phase begin to form [a(46Ni)]
At c’, liquid composition: 29wt% Ni-71 wt% Cu Solid phase: 40 wt% Ni-60 wt% Cu [a(40Ni)] Since diffusion in solid is relatively slow, a phase formed at b’ has not changes composition appreciably still [a(46Ni)] Composition of a grains continuously changes radially from 46 wt% Ni at center to 40 wt% Ni at the outer grains average composition (say 42 wt%Ni) Solidus line has shifted
30
Chapter 9 Sections: 9.7
31
9.7 Binary Eutectic Systems
Binary Eutectic Phase Diagram Another type of common and relatively simple phase diagram Figure 9.6 shows for the copper-silver system Features of Binary Eutectic Phase Diagram Feature 1: Three single-phase regions ( a, b, and liquid ) The a phase: solid solution rich in copper, silver as solute, FCC The b phase: solid solution rich in silver, copper as solute, FCC Solubility in each of these solids phases is limited Solubility limit for a phase Line ABC ( Increases with temperature, maximum, decreases to minimum) Solvus line (BC) Solidus line (AB)
32
Line FGH ( Increases with temperature, maximum, decreases to minimum)
Solubility limit for b phase Line FGH ( Increases with temperature, maximum, decreases to minimum) Solvus line (GH) Solidus line (FG) Line BEG is also solidus line Maximum solubility in both a and b phases occur at 779oC Feature 2: Three two-phase regions a + L b + L a + b
34
As silver is added to copper,
The melting temperature of copper is lowered by silver additions. Line AE: the liquidus line Same is true as copper is added to silver Point E is called the invariant point (CE = 71.9 wt% Ag, TE = 779oC) At E, an important reaction occurs Upon cooling, a liquid phase is transformed into a and b solid phases The opposite reaction occurs upon heating This is called eutectic reaction ( Eutectic means easily melted) CE and TE represents eutectic composition and temperature Horizontal solidus line at TE is called the eutectic isotherm
35
The eutectic reaction, upon cooling, is similar to solidification of pure components:
Reaction proceeds to completion at a constant temperature Isothermal at TE Solid products of eutectic solidification is always two solid phases Another common eutectic system is that for lead and tin The phase diagram is shown in Figure 9.7 Example 9.2 Example 9.3
36
Development of Microstructure in Eutectic Alloys
Depending on composition, several different types of microstructures These possibilities considered in terms of the lead-tin phase diagram Figure 9.7
37
First case: Composition C1
Range: Composition ranging between a pure metal and the maximum solid solubility for that component at room temperature (20oC) Lead-rich alloy (0-2 wt% Sn) Slowly cooled down
38
Second Case: Composition C2
Range: Composition ranging between the room temperature solubility and the maximum solid solubility at the eutectic temperature. Corresponds: 2 wt% Sn to 18.3 wt% Sn
39
Third Case: Composition C3
Solidification of the eutectic composition Corresponds: 61 wt% Sn The microstructure at i is known as eutectic structure.
40
Lamellae : The microstructure of a solid consisting of alternating layers Shown in Figure 9.12
41
Fourth Case: Composition C4
All composition other than the eutectic composition At m, a phase will be present in both : Eutectic a Primary a
42
Microconstituents An element of the microstructure having an identifiable and characteristic structure. At m, two microconstituents ( primary a and the eutectic structure )
43
Relative amounts of both eutectic and primary a microconstituents
Eutectic microconstituents forms from liquid having eutectic composition (61 wt% Sn, Fig 9.11, point i) Apply lever rule using tie line Eutectic fraction We = WL = P / (P+Q) Primary a fraction Wprimary a = Q / (P+Q) Total a fraction (primary plus eutectic) W a = (Q+R) / (P+Q+R) Total b fraction (primary plus eutectic) W b = P / (P+Q+R)
45
Chapter 9 Sections: 9.8, 9.9, 9.13
46
9.8 Equilibrium Diagrams Having Intermediate Phases or Compounds
Terminal solid solutions Solid phases exist over the composition ranges near the concentration extremities of the phase diagram Examples: Copper-Silver system (Figures 9.6) Lead –Tin system (Figure 9.7) Intermediate solid solutions Intermediate phases Solid phases at other than the two composition extremes Example: Cupper-Zinc system (Figure 9.17)
50
Intermetallic compounds
Discrete intermediate compounds rather than solid solutions These compounds have distinc chemical formulas
51
9.9 Eutectoid and Peritectic Reactions
Eutectoid Reaction Invariant point E, Figure 9.19 Upon cooling, a solid phase transforms into two other solid phases Reverse reaction occurs on heating Horizontal line at 560oC: eutectoid or eutectoid isotherm Eutectic liquid on cooling transforms into two solids Importance: iron-carbon diagram Peritectic Reaction Another invariant reaction (Point P, Figure 9.19) Upon heating, one solid phase transforms into a liquid phase and another solid phase (d + L) on cooling e
53
THE IRON-CARBON SYSTEM 9
THE IRON-CARBON SYSTEM The iron-iron carbide (Fe-Fe3C) phase diagram Of all binary alloys, the most important is the iron-carbon phase diagram. A portion is shown in Figure 9.22 Practically all steels and cast irons have less than 6.70 wt% C. Pure iron: Upon heating, experiences two changes in crystal structure before it melts At room temperature, the stable form ( ferrite or a iron ) has a BCC. At 912oC, Ferrite experiences polymorphic transformation FCC austenite, or g iron. At 1394oC, reverts back to a BCC phase ( d ferrite ) At 1538oC, d ferrite melts
55
At 6.7 wt% C Intermediate compound iron carbide, or cementite (FE3C), is formed. 6.7 wt% C corresponds to 100 wt% Fe3C Carbon is an interstitial impurity in iron Forms a solid solution with each of a and d ferrites and g austenite BCC a ferrite Small concentration of carbon are soluble (0.022 wt% at 727oC) Even though small concentration, significantly influences mechanical properties Relatively soft, magnetic at temperature below 768oC, density of 7.88 g/cm3 Figure shows photomicrograph
57
Austenite or g phase iron
Not stable below 727oC FCC structure Maximum solubility of carbon in austenite: 2.14 wt% C at 1147oC. Figure 9.23b shows photomicrograph BCC d ferrite is virtually same as a ferrite Stable only at relatively high temperatures no technological importance Cementite (Fe3C) forms when the solubility limit of carbon in a ferrite is exceeded below 727oC Coexist with g phase between 727 and 1147oC Cementite is very hard and brittle strength of steel is enhanced by its presence
58
One eutectic reaction for iron-carbon system
At 4.30 wt% C and 1147oC L on cooling g + Fe3C L on heating g + Fe3C Eutectoid invariant point at 0.76 wt% C and 727oC g (0.76 wt% C) on cooling a (0.022 wt% C) + Fe3C(6.7 wt%C) g (0.76 wt% C) on heating a (0.022 wt% C) + Fe3C(6.7 wt%C)
59
Chapter 9 Sections: 9.14, 9.15
60
9.14 Development of Microstructures in Iron-Carbon Alloys
Microstructure depends on both the carbon content and heat treatment. Discussion confined to very slow cooling equilibrium is continuously maintained. Phase change from g austenite region into the a + Fe3C phase field Relatively complex, similar to eutectic system Consider cooling of an alloy of eutectoid composition (Point a at 0.76 wt% C and 800oC) No changes until the eutectoid temperature (727oC) At b, pearlite microstructure Figure 9.25, photomicrograph of eutectoid steel showing the pearlite.
62
The pearlite exists as grains
Often termed colonies Layer orientation is same in each colony Thick light layers ferrite phase Thin lamellae, mostly dark cementite Ferrite soft and ductile Cementite hard and brittle Pearlite intermediate between ferrite and cementite
64
Hypo-Eutectoid Alloys
Consider a composition Co to the left of eutectoid Between and 0.76 wt% C Termed a hypoeutectoid (less than eutectoid) alloy Cooling is shown in Figure 9.27 At d, about 775oC, a + g phase Composition of ferrite (a iron) changes along MN Slight changes Composition of austenite (g iron) changes dramatically along MO At f, just below the eutectoid All g-phase having eutectoid composition transforms to pearlite No change in a-phase (ferrite ) Ferrite exist in two phases: Eutectoid ferrite ferrite that is present in pearlite Proeutectoid ferrite pre- or before eutectoid; formed above Te
66
Figure 9.28: photomicrograph of a 0.38 wt% C steel
Large white regions: proeutectoid ferrite Pearlite Dark regions Spacing between a and Fe3C layers vary from grain to grain
67
Hyper-Eutectoid Alloys
Right side of eutectoid ( between 0.76 and 2.14 wt% C) At g, only g phase (austenite ) of composition C1 Upon cooling at h, g g + Fe3C phase field Proeutectoid cementite that forms before the eutectoid reaction Cementite composition remains constant as the temperature changes Austenite composition changes along line PO towards eutectoid Below eutectoid temperature at i, All remaining austenite of eutectoid composition pearlite (a+Fe3C) Microconstituents of resulting microstructure pearlite and proeutectoid cementite (Fig 9.30)
69
Photomicrograph of hypereutectoid alloys
Photomicrograph of 1.4 wt% C steel is shown in Fig. 9.31 Consists of pearlite and proeutectoid cementite Proeutectoid cementite appears light Same appearance as proeutectoid ferrite difficulty in distinguishing between hypoeutectoid and hypereutectoid steels on the basis of microstructure
70
Photomicrograph of hypereutectoid alloys (Contd.)
Comparison with hypoeutectoid alloys photomicrograph
71
Relative amounts for hypoeutectoid steel alloys
Using lever rule Tie line extends between and 0.76 wt% C Fraction of pearlite, Wp = T / (T+U) = (Co’ – 0.022) / (0.76 – 0.022) Fraction of proeutectoid a, Wa’ = U / (T+U) = ( Co’) / (0.76 – 0.022)
73
Relative amounts for hypereutectoid steel alloys
Using lever rule Tie line extends between 0.76 and 6.7 wt% C Fraction of pearlite, Wp = X / (V+X) = (6.70 – C1’) / ( ) Fraction of proeutectoid cementite (Fe3C) WCementite’ = V / (V+X) = (C1’ ) / ( )
74
9.15 The Influence of Other Alloying Elements
Other alloying elements (Cr, Ni, Ti, etc.) bring about dramatic changes Changes in the position of phase boundaries and shapes One important change shift in eutectoid position w.r.t temperature and composition These effects are illustrated in Figures 9.32 and 9.33
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.