Download presentation
Presentation is loading. Please wait.
1
Mark Saunders www.durham.ac.uk/mark.saunders Inertial sensing with cold atoms.
2
Mark Saunders www.durham.ac.uk/mark.saunders
3
Mark Saunders www.durham.ac.uk/mark.saunders http://massey.dur.ac.uk/index.html
4
Mark Saunders www.durham.ac.uk/mark.saunders Inertial sensing with cold atoms.
5
Mark Saunders www.durham.ac.uk/mark.saunders The -kicked rotor ( kr)
6
Mark Saunders www.durham.ac.uk/mark.saunders Classical kr
7
Mark Saunders www.durham.ac.uk/mark.saunders Classical kr
8
Mark Saunders www.durham.ac.uk/mark.saunders Classical kr: Poincaré sections
9
Mark Saunders www.durham.ac.uk/mark.saunders Quantum kr
10
Mark Saunders www.durham.ac.uk/mark.saunders Quantum kr
11
Mark Saunders www.durham.ac.uk/mark.saunders Quantum kr: Resonance and antiresonance
12
Mark Saunders www.durham.ac.uk/mark.saunders Quantum kr: Resonance and antiresonance
13
Mark Saunders www.durham.ac.uk/mark.saunders Quantum kr: Resonance and antiresonance
14
Mark Saunders www.durham.ac.uk/mark.saunders Inertial sensing with cold atoms.
15
Mark Saunders www.durham.ac.uk/mark.saunders The atom-optical -kicked accelerator
16
Mark Saunders www.durham.ac.uk/mark.saunders The atom-optical -kicked accelerator
17
Mark Saunders www.durham.ac.uk/mark.saunders The two-level atom
18
Mark Saunders www.durham.ac.uk/mark.saunders The two-level atom
19
Mark Saunders www.durham.ac.uk/mark.saunders The two-level atom
20
Mark Saunders www.durham.ac.uk/mark.saunders The two-level atom
21
Mark Saunders www.durham.ac.uk/mark.saunders The two-level atom
22
Mark Saunders www.durham.ac.uk/mark.saunders The two-level atom
23
Mark Saunders www.durham.ac.uk/mark.saunders The atom-optical -kicked accelerator
24
Mark Saunders www.durham.ac.uk/mark.saunders The atom-optical -kicked accelerator
25
Mark Saunders www.durham.ac.uk/mark.saunders The atom-optical -kicked accelerator
26
Mark Saunders www.durham.ac.uk/mark.saunders Thermal gas: Initial conditions
27
Mark Saunders www.durham.ac.uk/mark.saunders Thermal gas: Initial conditions
28
Mark Saunders www.durham.ac.uk/mark.saunders Thermal gas: Initial conditions
29
Mark Saunders www.durham.ac.uk/mark.saunders Simulations
30
Mark Saunders www.durham.ac.uk/mark.saunders Inertial sensing with cold atoms.
31
Mark Saunders www.durham.ac.uk/mark.saunders Experimental accessibility
32
Mark Saunders www.durham.ac.uk/mark.saunders Applications
33
Mark Saunders www.durham.ac.uk/mark.saunders Application 1: Velocity selection
34
Mark Saunders www.durham.ac.uk/mark.saunders Application 1: Velocity selection
35
Mark Saunders www.durham.ac.uk/mark.saunders Application 2: Gyroscopes
36
Mark Saunders www.durham.ac.uk/mark.saunders Application 2: Gyroscopes
37
Mark Saunders www.durham.ac.uk/mark.saunders Application 2: Gyroscopes
38
Mark Saunders www.durham.ac.uk/mark.saunders Application 3: Accelerometry
39
Mark Saunders www.durham.ac.uk/mark.saunders Applications
40
Mark Saunders www.durham.ac.uk/mark.saunders Inertial sensing with cold atoms.
41
Mark Saunders www.durham.ac.uk/mark.saunders Inertial sensitivity: Zero Temperature limit
42
Mark Saunders www.durham.ac.uk/mark.saunders Inertial sensitivity: Zero Temperature limit
43
Mark Saunders www.durham.ac.uk/mark.saunders Inertial sensitivity: Zero Temperature limit
44
Mark Saunders www.durham.ac.uk/mark.saunders Inertial sensitivity: Zero Temperature limit
45
Mark Saunders www.durham.ac.uk/mark.saunders Inertial sensitivity: Finite temperatures
46
Mark Saunders www.durham.ac.uk/mark.saunders Resonance width
47
Mark Saunders www.durham.ac.uk/mark.saunders Resonance width
48
Mark Saunders www.durham.ac.uk/mark.saunders Resonance width
49
Mark Saunders www.durham.ac.uk/mark.saunders
50
Mark Saunders www.durham.ac.uk/mark.saunders Inertial sensing with cold atoms.
51
Mark Saunders www.durham.ac.uk/mark.saunders Inertial sensing with cold atoms.
52
Mark Saunders www.durham.ac.uk/mark.saunders Thesis
53
Mark Saunders www.durham.ac.uk/mark.saunders Quantum kr: Resonance and antiresonance
54
Mark Saunders www.durham.ac.uk/mark.saunders Fractional resonance: Zero temperature limit
55
Mark Saunders www.durham.ac.uk/mark.saunders Thermal gas: w = 2.5
56
Mark Saunders www.durham.ac.uk/mark.saunders Quasimomentum dependence
57
Mark Saunders www.durham.ac.uk/mark.saunders Inertial dependence
58
Mark Saunders www.durham.ac.uk/mark.saunders Inertial sensitivity: Zero Temperature limit
59
Mark Saunders www.durham.ac.uk/mark.saunders Quantum observables
60
Mark Saunders www.durham.ac.uk/mark.saunders Quantum observables
61
Mark Saunders www.durham.ac.uk/mark.saunders Quantum observables
62
Mark Saunders www.durham.ac.uk/mark.saunders Simulations
63
Mark Saunders www.durham.ac.uk/mark.saunders Simulations
64
Mark Saunders www.durham.ac.uk/mark.saunders Hoogerland: Velocity selection
65
Mark Saunders www.durham.ac.uk/mark.saunders Prentiss: Analytic Result Question: How well is coherence preserved?
66
Mark Saunders www.durham.ac.uk/mark.saunders dkp: Thermal resolution
67
Mark Saunders www.durham.ac.uk/mark.saunders Momentum cumulants: Simulation results
68
Mark Saunders www.durham.ac.uk/mark.saunders Momentum cumulants: Power law transition
69
Mark Saunders www.durham.ac.uk/mark.saunders Momentum cumulants: Power law transition
70
Mark Saunders www.durham.ac.uk/mark.saunders Resonance width
71
Mark Saunders www.durham.ac.uk/mark.saunders w dependence
72
Mark Saunders www.durham.ac.uk/mark.saunders Quasimomentum Resonance Width Interpretation:The resonance widths are independent of gravity (To be verified analytically). Question:WHY does the gravity affect the temperature dependence? Answer:This phenomenon must be due the number of resonances rather than their width. Observation: The second- and fourth-order momentum moments have a similar quasimomentum dependence
73
Mark Saunders www.durham.ac.uk/mark.saunders Moment Evolution Analytic Asymptotes [8] Halkyard, Saunders, Challis and Gardiner, in preparation (March 2008) Ultra-cold Limit Thermal Limit
74
Mark Saunders www.durham.ac.uk/mark.saunders Moment Evolution in Temperature Limits Ultra-cold Limit Thermal Limit [9] d’Arcy, Godun, Oberthaler, Summi, Burnett, and Gardiner, Phys. Rev. E 64 056233 (2001) [9]
75
Mark Saunders www.durham.ac.uk/mark.saunders Momentum Moment Temperature Dependence
76
Mark Saunders www.durham.ac.uk/mark.saunders Momentum Cumulant Temperature Dependence
77
Mark Saunders www.durham.ac.uk/mark.saunders Inertial sensing with cold atoms.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.