Download presentation
1
CS232
2
Schedule 1. Introduction 2. Points vs vector (distance, balls, sphere)
Chapter 1 3. Divide and Conquer: Algorithms for Near Neighbor Problem Handout (section)
3
4. Hyperplanes Chapter 2 Ray intersections Lines By linear equations
By two points When does a line passing the origin Intersection of two lines Matrix and algebraic approach (two variables and two equations)
4
3D Ray and mirrors Planes in three dimensions By linear equations
By three points When does a plane passing the origin
5
Hyperplanes Hypereplanes in n-dimensions Intersection of three planes
Matrix and algebraic approach (three variables and equations) Hypereplanes in n-dimensions By linear equations By n points When does a hyperplane passing through the origin Intersection of n hyperplanes in n dimensions
6
Matrix Form What is a matrix? Matrix vector multiplication
(inner product after all) Matrix form of intersection of n hyperplanes --- system of linear equations?
7
Column Picture: combination of vectors
Find proper linear combinations of vectors Visualize hyperplane is hard, so you might eventually like the column pictures.
8
Repeated the questions
Row pictures: n hyperplanes meets at a single points Column pictures: combines n vectors to produce another vector
9
Gaussian Elimination Gaussian Elimination in 2 dimensions example
Pictures Pivots Multipliers Upper triangular matrix Back substitution
10
Two dimensions Unique solution No solution Infinitely many solutions
What if the pivot is 0!!!
11
3D Gaussian Elimination in 3 dimensions
example Pictures Pivots Multipliers Upper triangular matrix Back substitution Can be extended to any dimensions
12
5. Gaussian Elimination (General form)
Matrix Algebra Matrix addition Scalar times a matrix Matrix multiplication (dimensions have to agree) Associative law Non commutative law
13
Gaussian Elimination (General form)
Identity matrix Elimination matrix
14
Permutation Matrix
15
Matrix algebra (General form)
All the laws (page 58 – 59)
16
Complexity of Matrix Multiplication
cube
17
Block Multiplication
18
Strassen’s Fast Matrix Mulplication
Divide and conquer
19
6. Inverse Matrix 7 Quiz 1 8 LU factorization
Rest of chapter 2
20
9. Two dimensional convex Hull
From the handout Convex combination
21
10. Algorithms for Null space
3.1 – 3.3
22
11. Complete Linear Solver
3.4 – 3.6
23
12. No class 13 Geometric Projection
4.1 – 4.2
24
14. Midterm 15 Least Square Algorithm
25
16. QR Decomposition
26
17-18 no classes spring break
27
19. Hubs and Authority Theory for Webs Hand out
Understanding webs How Google works
28
20. Simplex and its Volume Chapter 5
29
21. Determinants: Matrix Representation of volume
30
22. Eivenvalue problem and Spectral Geometry
31
23. Quiz 2
32
24. Diagonalization
33
25. Quadratic Shapes Positive Definite matrices
34
26. Dimensional Reduction
Singular value Decomposition
35
27. Application: Computer Graphics
36
28. Spherical Geometry Points on sphere Caps
Stereographic Transformation
37
29. Geometric Transformation
Chapter 7
38
30 Geometric Transformation
39
31. Triangulations and Voronoi Diagram
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.