Download presentation
Presentation is loading. Please wait.
1
Collaborative filtering with privacy Wim Verhaegh Aukje van Duijnhoven Jan Korst Pim Tuyls IPA herfstdagen, 23 November 2004
2
Philips Research, Wim Verhaegh, IPA herfstdagen, 23 November 20042 Privacy issue Personalization is key in Ambient Intelligence –requires user profiles Privacy risks of services –untrusted server –server gets hacked –server goes bankrupt Perform personalization on encrypted data –collaborative filtering
3
Philips Research, Wim Verhaegh, IPA herfstdagen, 23 November 20043 Overview Collaborative filtering system Privacy requirements CF method –calculation scheme (formulas & example) Encryption basics Encrypted CF method Item-based CF Conclusion
4
Philips Research, Wim Verhaegh, IPA herfstdagen, 23 November 20044 Collaborative filtering system System to recommend new content –recommend content that ‘similar users’ like database with ratings calculate similarities similarity values predict missing ratings music player user server sideuser side recommend
5
Philips Research, Wim Verhaegh, IPA herfstdagen, 23 November 20045 Security requirements Nobody may know users’ ratings –not even anonymously Nobody may know who rated what –not even anonymously Nobody may know who resembles who How to perform collaborative filtering?
6
Philips Research, Wim Verhaegh, IPA herfstdagen, 23 November 20046 Collaborative filtering methods Memory based –computes similarities and interpolates user based item based Model based –first uses rating database to build a model (e.g. extract basic rating profiles) –uses model for prediction Most approaches can be encrypted usersitems x x x x x x xx xx x x x x x x x x x xx x x x x x x x x x x x x x x x x x x
7
Philips Research, Wim Verhaegh, IPA herfstdagen, 23 November 20047 Memory-based CF with user similarities Two steps 1.determine similarities between users 2.predict missing ratings Step 1: Pearson correlation
8
Philips Research, Wim Verhaegh, IPA herfstdagen, 23 November 20048 Step 2: prediction E.g. weighted deviations from the average –similarities are weights
9
Philips Research, Wim Verhaegh, IPA herfstdagen, 23 November 20049 Example Tea and coffee flavors –4 users –9 items (flavors) T1T2T3C1C2C3C4C5C6 Wim21144343 Jan1155443 Pim4552332 Aukje541322
10
Philips Research, Wim Verhaegh, IPA herfstdagen, 23 November 200410 Example Subtract averages flavorT1T2T3C1C2C3C4C5C6 Wim-0.8-1.8 1.2 0.21.20.2 Jan-2.3 1.7 0.7 -0.3 Pim0.61.6 -1.4-0.4 -1.4 Aukje2.21.2-1.80.2-0.8 T1T2T3C1C2C3C4C5C6 Wim-0.8-1.8 1.2 0.21.20.2 Jan-2.3 1.7 0.7 -0.3 Pim0.61.6 -1.4-0.4 -1.4 Aukje2.21.2-1.80.2-0.8 Compute similarities, e.g.
11
Philips Research, Wim Verhaegh, IPA herfstdagen, 23 November 200411 Example Use similarities to predict missing ratings similarityWimJanPimAukjeT3 Wim10.78-0.96-0.85-1.8 Jan0.781-0.74-0.77-2.3 Pim-0.96-0.7410.831.6 Aukje-0.85-0.770.831 Prediction for Aukje, tea T3
12
Philips Research, Wim Verhaegh, IPA herfstdagen, 23 November 200412 Public key encryption scheme: Paillier Generate keys –choose large random primes p, q (private) –calculate n = pq and a ‘generator’ g (public) Encrypt message m by with r random Homomorphism properties
13
Philips Research, Wim Verhaegh, IPA herfstdagen, 23 November 200413 Encrypted inner product User a: User b: User a encrypts vector and sends to b User b computes and sends back to a User a decrypts it to get inner product
14
Philips Research, Wim Verhaegh, IPA herfstdagen, 23 November 200414 Encrypted CF: correlation step Rewrite correlation as three inner products where Zeros to avoid contributions from in sums
15
Philips Research, Wim Verhaegh, IPA herfstdagen, 23 November 200415 Encrypted CF: correlation step Protocol Active user knows correlation values, but not to whom Server knows between whom, but not the correlation values active userserverother users copy
16
Philips Research, Wim Verhaegh, IPA herfstdagen, 23 November 200416 Encrypted CF: prediction step Rewrite Protocol –each user b adds random factor active userserverother users split
17
Philips Research, Wim Verhaegh, IPA herfstdagen, 23 November 200417 Memory-based CF with item similarities Similarities computed between items –compare rows in the matrix –similar formulas users items x x x x x x xx xx x x x x x x x x x xx x x x x x x x x x x x x x x x x x x
18
Philips Research, Wim Verhaegh, IPA herfstdagen, 23 November 200418 Memory-based CF with item similarities Similarities Predictions
19
Philips Research, Wim Verhaegh, IPA herfstdagen, 23 November 200419 Threshold Paillier Calculation of sums: use threshold encryption –key is shared among k users –decryption needs > t shares serverusers > t
20
Philips Research, Wim Verhaegh, IPA herfstdagen, 23 November 200420 Encrypted item-correlation step Rewrite correlation Protocol serverusers > t
21
Philips Research, Wim Verhaegh, IPA herfstdagen, 23 November 200421 Encrypted item-based prediction Rewrite prediction formula –item average: two sums –prediction: four inner products (server & user a) –protocols as before
22
Philips Research, Wim Verhaegh, IPA herfstdagen, 23 November 200422 Conclusion Collaborative filtering can be encrypted –various correlation and prediction formulas –various CF approaches More computations to be done at users’ sites –encryption and decryption –users have to be online Future work –protection against more complicated attacks –peer-to-peer solution
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.