Download presentation
Presentation is loading. Please wait.
1
17.02.2005 Fast and effective prediction of miRNA targets Marc Rehmsmeier CeBiTec, Bielefeld University, Germany Junior Research Group Bioinformatics of Regulation
2
Small interfering RNAs versus small temporal RNAs Hannon. Nature. 418:244-251, 2002.
3
miRNA/target duplexes Grosshans and Slack. The Journal of Cell Biology, 156(1):17-21, 2002.
4
A direct approach Given a miRNA and a potential target: What are the energetically most favourable binding sites? Calculation of multiple mfe secondary structure duplexes
5
The language of RNA duplexes hybrid =nil ><< tt (region,region)||| unpaired_left_top ||| closed... h unpaired_left_top =ult <<< tt (base,empty) ~~~ unpaired_left_top ||| unpaired_left_bot... h unpaired_left_bot = ulb <<< tt (empty,base) ~~~ unpaired_left_bot||| edangle... h edangle = eds <<< tt (base, base) ~~~ closed ||| edt <<< tt (base,emptybase) ~~~ closed ||| edb <<< tt (emptybase,base) ~~~ closed... h
6
closed =stacking_region||| bulge_top||| bulge_bottom||| internal_loop||| end_loop... h stacking_region = sr <<< basepair ~~~ closed bulge_top= (bt <<< basepair ~~~ tt (uregion, empty)) `topbound` closed bulge_bottom = (bb <<< basepair ~~~ tt (empty, uregion)) `botbound` closed internal_loop= (il <<< basepair ~~~ tt (uregion,uregion)) `symbound` closed end_loop = el <<< basepair ~~~ tt (region,region) The language of RNA duplexes
7
Dynamic Programming recurrences Time/memory complexity: linear in target length
8
let-7/lin-41 binding sites position: 688, mfe: -28.0 kcal/mol position: 737, mfe: -29.0 kcal/mol
9
Requirements For prediction of miRNA targets in large databases we need: A fast program Good statistics
10
Length normalisation of minimum free energies
11
p-values of individual binding sites
12
Poisson statistics of multiple binding sites Probability of k binding sites: with For small p-values: The probability of at least k binding sites:
13
Comparative analysis of orthologous targets
14
Multi-species p-values Poisson p-values: multi-species p-value: General case: k species
15
A dependence problem We should see a p-value as often as it says (blue curve), but we don‘t (red curve).
16
let-7b/NME4 (human/mouse) binding sites -GGCTCAAGCTGCCCTTACCACCCCATCCCCCACGCAGGACCAACTACCTCCGTCAGCAAGAACCCAAGCCCACATCCAAACCTGCCTGTCCCAAACCAC GGGCTTGCACTGCCTTCTGCACTTCAGGTCT-ACCCATGACCTACTACCTCTGTCAACAAGAAGTCAAGCCCCCATGC---TTCCCATGTCCCCAAAC-- **** ***** * *** ** * ** ** **** ******** **** ****** ******* *** * * ****** ** * TTACTTCCCTGTTCACCTCTGCCCCACCCCAGCCCAGAGGAGTTTGAGCCACCAACTTCAGTGCCTTTCTGTACCCCAAGCCAGCACAAGATTGGACCAA -CACTCCCTACTCCCGCTCTACCCAACTCCAGCCCAGGGGAGTCTAAGCCTCAACTCTATGTGCCTTTTTGTATCCTAAGTCAATACAATATTGGACCAT *** ** * * **** *** ** ********* ***** * **** * * * ******** **** ** *** ** **** ********* TCCTTTTTGCACCAAAGTGCCGGACAACCTTTGTGGTGGGGGGGGGTCTTCACATTATCATAACCTCTCCTCTAAAGGGGAGGCATTAAAATTCACTGTG GTCCTTGTGTACAAAAGTGCCAGACAACCTTTG--------GGGCATTGTCA-AAGGTGACTTCACCTGCCTCAAAGGAGAGACATTAAAATTT--TATG * ** ** ** ******** *********** *** * *** * * * * ** * ***** *** ********** * ** CCCAGCACATGGGTGGTACACTAATTATGACTTCCCCCAGCTCTGAGGTAGAAATGACGCCTTTATGCAAGTTGTAAGGAGTTGAACAGTAAAGAGGAAG CTTAAAAT-------------------------------------------------------------------------------------------- * * * Multi-species p-value with k = 2:1.5e-08 Multi-species p-value with k = 1.1:5.0e-05 k = 1.1 is the effective k
17
Effective number of orthologous targets
18
Requirements For prediction of miRNA targets in large databases we need: A fast program Good statistics
19
True and false positives and negatives Classify as Positives Classify as Negatives TP FP TN FN Positives Negatives
20
TP FP TN FN Sensitivity and specificity p-values control specificity Spec TP FP TN FN Spec
21
RNAhybrid Target prediction workflow target db miRNA registry individual p-values multi-species p- values Poisson p- values bantam #sites target gene E-value Dm Dp Ag CG13906 0.000141369 2 1 1 CG3629 0.029351532 2 2 0 CG17136 0.047489474 2 0 1 CG5123 0.048580874 2 2 0 CG13761 0.120263377 0 2 2 CG11624 0.605310610 0 3 0 CG1142 0.677123716 0 0 1 CG13333 0.714171923 2 0 0
22
Prediction of Drosophila miRNA targets 78 miRNAs 28,645 3‘UTRs (1/3 from D. mel, 1/3 from D. pseu, 1/3 from A. gamb)
23
Bantam hits targetE-value#sites Dm # sites Dp #site s Ag nervous fingers 10.00014211 Distal-less0.029220 Wrinkled (Hid)0.049220
24
miR-7 hits targetE-value#sites Dm # sites Dp #sites Ag CG83940.000095233 Twin of m40.00014220 E(spl) region transcript m3 0.0083110 E(spl) region transcript m 0.094120 CG73420.21110 CG104440.27111 Him0.30120 CG111320.86110 Arginine methyltransferase 1 0.87110
25
miR-2 hits targetE-value#sitesE- value #sitesE- value #sites grim0.0141 1 00.0711 2 00.0451 1 0 reaper0.000611 1 00.111 1 00.00951 1 0 sickle0.0542 2 0 miR-2amiR-2bmiR-2c plus a number of others
26
RNAhybrid functionality length normalisation Poisson statistics web server seed/loop constraints miRNA specific statistics effective k comparative analysis multiple binding sites RNAhybrid
27
miRNA target selection surprise miRNA target selection rank based p-values E-values user guidance p-values indicate not only biochemical possibility, but also biological function.
28
Acknowledgements Peter Steffen, Robert Giegerich, Jan Krüger Matthias Höchsmann Alexander Stark, Julius Brennecke, Stephen M. Cohen Sven Rahmann Gregor Obernosterer Robert Heinen Leonie Ringrose
29
References Rehmsmeier M, Steffen P, Höchsmann M and Giegerich R. Fast and effective prediction of microRNA/target duplexes. RNA, 10:1507-1517, 2004. bibiserv.techfak.uni-bielefeld.de/rnahybrid
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.