Download presentation
Presentation is loading. Please wait.
1
Rooted Trees
2
More definitions parent of d child of c sibling of d ancestor of d descendants of g leaf internal vertex subtree root
3
Definition 2. A rooted tree is called an m-ary tree if every internal vertex has no more than m children. The tree is called a full m-ary tree if every internal vertex has exactly m children. An m-ary tree with m = 2 is called a binary tree. Are these full m-ary trees?
4
Trees as models
5
Properties of trees Theorem 2. A tree with n vertices has n - 1 edges Choose root, r. Set up one-to-one correspondence between edges and vertices other than r. There are n – 1 vertices so there are n – 1 edges.
6
Theorem 3. A full m-ary tree with i internal vertices contains n = mi + 1 vertices Every vertex (except root) is the child of an internal vertex. Each of the i internal vertices has m children. There are mi vertices (other than the root). Therefore n = mi + 1. i = 4 internal vertices m = 3 n = 3 × 4 + 1 = 13
7
Theorem 4.A full m-ary tree with i.n vertices has i = (n – 1)/m internal vertices and l = [(m – 1)n + 1]/m leaves ii.i internal vertices has n = mi + 1 vertices and l = (m – 1)i + 1 leaves iii.l leaves has n = (ml – 1)/(m – 1) vertices and i = (l – 1)/(m – 1) internal vertices
8
Theorem 5. There are at most m h leaves in an m-ary tree of height h.
9
Corollary 1. If an m-ary tree of height h has l leaves, then h log m l . If the m-ary tree is full and balanced, then h = log m l .
10
Binary Search Trees
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.