Presentation is loading. Please wait.

Presentation is loading. Please wait.

Near-field thermal radiation

Similar presentations


Presentation on theme: "Near-field thermal radiation"— Presentation transcript:

1 Near-field thermal radiation
Rémi Carminati Laboratoire EM2C CNRS, Ecole Centrale Paris France

2 ACI and ANR projects (France) EU Integrated project
Acknowledgments K. Joulain (Poitiers) C. Henkel (Potsdam) Y. De Wilde (Paris) J.-J. Greffet (Paris) J.J. Sáenz (Madrid) M. Laroche, F. Marquier, C. Arnold (coherent thermal emission) J.P. Mulet (radiative transfer at small scale) Y. Chen (LPN, Marcoussis, samples) ACI and ANR projects (France) EU Integrated project

3 Outline Blackbody radiation in the near field Spectral behavior - connection to LDOS Spatial coherence Coherent thermal emission by microstructured surfaces Thermal emission STM : measuring the LDOS of surface waves Radiative transfer at mesoscopic scale T L

4 Radiative energy density
Blackbody radiation T Planck’s function Radiative energy density u(w,T)

5 T Thermal emission by a heated body emissivity Planck’s function
Incoherent summation of intensities Temperatures + emissivities : radiative transfer

6 Small is different Classical theory Mesoscopic scale Ray optics
Incoherent summation of intensities (fluxes) Local radiative properties Opaque bodies (surface properties) L << l L << lcoh L << l L << lcoh L << d Waves Near field (surface waves) Coherence Interferences Non locality Volume radiation

7 Near-field blackbody radiation

8 Near-field thermal emission spectrum (SiC)
Energy density Spectrum at T = 300 K SiC surface z SiC, T = 300 K Shchegrov, Joulain, Carminati, Greffet, PRL 85, 1548 (2000)

9 Physical origin of the near-field behavior
Energy density LDOS Photon energy Bose-Einstein distribution Blackbody radiation : Surface electromagnetic modes (surface polaritons) Surface modes modify the LDOS Evanescent modes : near-field effect w peak

10 LDOS above an aluminum surface
LDOS increases substantially in the near field Plasmon resonance Far-field value for d∞ and for w∞ Joulain, Carminati, Mulet, Greffet, Phys. Rev. B 68, (2003)

11 Asymptotic expression of the LDOS
In the near field (z << l) : Local density of states : Resonance for Re[e(w)] = -1 Quasi-static fields

12 Surface polaritons induce spatial coherence Field spatial correlation
Metal (Au) with surface plasmon Cristal (SiC) with surface phonon Coherence length ~ decay length of the polariton Example : 36 l for SiC at l = mm Blackbody radiation Field spatial correlation T Carminati, Greffet, PRL 82, 1660 (1999)

13 Calculation of thermal fluctuating fields
E(r,t) T Linear response 2) Spectral densities 3) Fluctuation-dissipation theorem Rytov, Kravtsov and Tatarskii, Principles of Statistical Radiophysics (Springer, Berlin, 1989)

14 Playing with surface modes : Coherent thermal emission

15 Antenna versus standard thermal source
HF Interferences produce directivity Interferences if the fields are correlated along the antenna

16 Design of coherent thermal sources (surface phonon polaritons)
q l Principle : grating coupling Ksw SiC Period : 6.25 mm Height : mm Fill factor : 0.5

17 Experimental set-up Orientation control Heating (T contol) Blackbody
Grating FTIR spectrometer Polarizer KRS5 R = 600 mm

18 Angular emission pattern at l = 11.36 mm
q Infrared antenna l Green : theory T = 300 K Red : experiment T = 800 K Dl = 0.22 mm SiC Greffet, Carminati, Joulain, Mulet, Mainguy, Chen, Nature 416, 61 (2002)

19 Emission pattern at different wavelengths
Marquier et al., Phys. Rev. B. 69, (2004)

20 Extraordinary spatial coherence
on tungsten surfaces due to surface plasmons Tungsten supports surface plasmons in the near infrared Plasmon contribution Coherence length 600 l at 4.5 mm !!! Field spatial correlation T

21 Highly-directional near-infrared tungsten source
Laroche et al., Opt. Lett. 30, 2623 (2005) Emission pattern Theory Experiment a = 3 mm, h = mm Fill factor 0.5 Measured emissivity at  = 4.53 m Dq = 0.9° ≈ CO2 laser Lcoh = 154 l (0.7 mm)

22 Angular thermal emission pattern at l = 1.55 mm
Surface waves on photonic-crystal slabs Angular thermal emission pattern at l = 1.55 mm Emissivity Observation angle Ge Dq = 0.6° Lcoh = 40 l (60 mm) Laroche, Carminati, Greffet, PRL 96, (2006)

23 Measurement of thermal near fields : Thermal Radiation STM

24 Thermal radiation STM (experiments)
De Wilde et al., ESPCI (Paris) HgCdTe (no filter)

25 Imaging surface plasmons on gold
(filter,  = 10.9 m) Interferences of thermally excited plasmons (spatial coherence !) Number of fringes depends on the width of the stripe (cavity) De Wilde et al., Nature 444, 740 (2006)

26 Probing the LDOS of surface plasmons
(filter,  = 10.9 m) De Wilde et al., Nature 444, 740 (2006)

27 Bardeen’s formalism in the context of STM
Nature 363, 524 (1993) Tunneling current Matrix element Example : Tersoff and Hamman theory (1983) First interpretation of the STM signal

28 Generalized Bardeen’s formalism
SNOM signal : Carminati and Saenz, Phys. Rev. Lett. 84, 5156 (2000)

29 Analogy between SNOM and STM
A SNOM measuring thermally emitted fields would probe the LDOS Exact LDOS if point detection (+ polarization average) Carminati and Saenz, Phys. Rev. Lett. 84, 5156 (2000) Joulain, Carminati, Mulet, Greffet, Phys. Rev. B 68, (2003)

30 Radiative transfer at small scales

31 f Radiative heat transfer through a small vacuum gap T1 L T2 > T1
Radiative flux (W.m-2) Classical heat transfer (far field) : hR  5 W.m-2.K-1

32 Monochromatic heat-transfer coefficient AsGa - Au
l = 6.2 mm, T = 300 K Near field (evanescent waves) Au L Classical value AsGa Wave effects l/100 l Mulet et al., Opt. Lett. 26, 480 (2001)

33 Radiative heat-transfer coefficient
SiC - SiC, T = 300 K hR  1/L2 SiC Ballistic conduction in air L SiC Classical value Mulet et al., Microsc. Thermophys. Eng. 6, 209 (2002)

34 Spectral behavior L = 10 nm , T = 300 K
SiC L SiC Quasi-monochromatic radiative heat transfer !

35 Near-field radiative heating of a nanoparticle
SiC  1/d3 d T Sphere radius r = 5 nm The absorption increases as 1/d3 in the near field 8 orders of magnitude between d=10 mm and d=10 nm Mulet et al., Appl. Phys. Lett. 78, 2931 (2001)

36 Application : near-field thermophotovoltaics
thermal source T= 2000 K T= 6000K thermal source T= 2000 K d << rad PV cell T= 300 K TPV cell T= 300 K TPV cell T= 300 K

37 Output electric power 50 3000 d TPV cell (T = 300K) T= 2000 K
tungsten source quasi-monochromatic source near field : W/m2 near field : W/m2 Pel (W. m-2) 50 Pel (W. m-2) 3000 far field :3.104 W/m2 BB 2000 K far field : W/m2 BB 2000 K d (m) d (m) Laroche, Carminati, Greffet, J. Appl. Phys. 100, (2006)

38 Efficiency of a near-field TPV system
T= 2000 K d TPV cell (T = 300K) quasi-monochromatic source tungsten source  (%) d (m) d (m)  (%) near field : 35% near field : 27% far field : 21 % far field : 8 % BB 2000 K BB 2000 K Laroche, Carminati, Greffet, J. Appl. Phys. 100, (2006)


Download ppt "Near-field thermal radiation"

Similar presentations


Ads by Google