Download presentation
Presentation is loading. Please wait.
1
Alignment of large genomic sequences Fragment-based alignment approach (DIALIGN) useful for alignment of genomic sequences. Possible applications: Detection of regulatory elements Identification of pathogenic microorganisms Gene prediction
2
The DIALIGN approach atctaatagttaaactcccccgtgcttag cagtgcgtgtattactaacggttcaatcgcg caaagagtatcacccctgaattgaataa
3
The DIALIGN approach atctaatagttaaactcccccgtgcttag cagtgcgtgtattactaacggttcaatcgcg caaagagtatcacccctgaattgaataa
4
The DIALIGN approach atctaatagttaaactcccccgtgcttag cagtgcgtgtattactaacggttcaatcgcg caaagagtatcacccctgaattgaataa
5
The DIALIGN approach atctaatagttaaactcccccgtgcttag cagtgcgtgtattactaacggttcaatcgcg caaagagtatcacccctgaattgaataa
6
The DIALIGN approach atctaatagttaaactcccccgtgcttag cagtgcgtgtattactaacggttcaatcgcg caaagagtatcacccctgaattgaataa
7
The DIALIGN approach atctaatagttaaactcccccgtgcttag cagtgcgtgtattactaacggttcaatcgcg caaagagtatcacccctgaattgaataa
8
The DIALIGN approach atc------taatagttaaactcccccgtgcttag cagtgcgtgtattactaacggttcaatcgcg caaagagtatcacccctgaattgaataa
9
The DIALIGN approach atc------taatagttaaactcccccgtgcttag cagtgcgtgtattactaacggttcaatcgcg caaa--gagtatcacccctgaattgaataa
10
The DIALIGN approach atc------taatagttaaactcccccgtgcttag cagtgcgtgtattactaacggttcaatcgcg caaa--gagtatcacc----------cctgaattgaataa
11
The DIALIGN approach atc------taatagttaaactcccccgtgc-ttag cagtgcgtgtattactaac----------gg-ttcaatcgcg caaa--gagtatcacc----------cctgaattgaataa
12
The DIALIGN approach atc------taatagttaaactcccccgtgc-ttag cagtgcgtgtattactaac----------gg-ttcaatcgcg caaa--gagtatcacc----------cctgaattgaataa Consistency!
13
The DIALIGN approach atc------TAATAGTTAaactccccCGTGC-TTag cagtgcGTGTATTACTAAc----------GG-TTCAATcgcg caaa--GAGTATCAcc----------CCTGaaTTGAATaa
14
First step in sequence comparison: alignment S1S1 S2S2 S3S3
15
For genomic sequences: Neither local nor global methods appropriate S1S1 S2S2 S1’S1’S2’S2’S3’S3’ S3S3
16
First step in sequence comparison: alignment Local method finds single best local similarity S1S1 S2S2 S1’S1’S2’S2’S3’S3’ S3S3
17
First step in sequence comparison: alignment Multiple application of local methods possible S1S1 S2S2 S1’S1’S2’S2’S3’S3’ S3S3
18
First step in sequence comparison: alignment S1S1 S2S2 S1’S1’S2’S2’S3’S3’ S3S3 Multiple application of local methods possible
19
First step in sequence comparison: alignment Multiple application of local methods possible S1S1 S2S2 S1’S1’S2’S2’S3’S3’ S3S3
20
First step in sequence comparison: alignment Multiple application of local methods possible S1S1 S2S2 S1’S1’S2’S2’S3’S3’ S3S3
21
First step in sequence comparison: alignment Threshold has to be applied to filter alignments: reduced sensitivity! S1S1 S2S2 S1’S1’S2’S2’S3’S3’ S3S3
22
First step in sequence comparison: alignment Alternative approach: During evolution few large-scale re- arrangements -> relative order homologies conserved Search for chain of local homologies
23
First step in sequence comparison: alignment Genomic alignment: chain of homologies S1S1 S2S2 S1’S1’S2’S2’S3’S3’ S3S3
24
First step in sequence comparison: alignment Genomic alignment: chain of homologies S1S1 S2S2 S1’S1’S2’S2’S3’S3’ S3S3
25
First step in sequence comparison: alignment Genomic alignment: chain of homologies S1S1 S2S2 S1’S1’ S2’S2’ S3’S3’ S3S3
26
First step in sequence comparison: alignment Genomic alignment: chain of homologies S1S1 S2S2 S1’S1’S2’S2’S3’S3’ S3S3
27
First step in sequence comparison: alignment Novel approaches for genomic alignment: WABA PipMaker MGA TBA Lagan Avid DIALIGN
28
Alignment of large genomic sequences Gene-regulatory sites identified by mulitple sequence alignment (phylogenetic footprinting)
29
Alignment of large genomic sequences
30
Objective function for DIALIGN: Weight score for every possible fragment f based on P-value: P(f) = probability of finding a fragment “like f” by chance in random sequences with same length as input sequences w(f) = -log P(f) (“weight score” of f) ”like f” means: at least same # matches (DNA, RNA) or sum of similarity values (proteins)
31
Objective function for DIALIGN: Score of alignment: sum of weight scores of fragments – no gap penalty!
32
Optimization problem for DIALIGN: Find consistent collection of fragments with maximum total weight score!
33
Alternative fragment weight scores for genomic sequences: Calculate fragment scores at nucleotide level and at peptide level.
34
catcatatcttatcttacgttaactcccccgt cagtgcgtgatagcccatatccgg
35
catcatatcttatcttacgttaactcccccgt cagtgcgtgatagcccatatccgg
36
catcatatcttatcttacgttaactcccccgt cagtgcgtgatagcccatatccgg Standard score: Consider length, # matches, compute probability of random occurrence
37
Translation option: catcatatcttatcttacgttaactcccccgt cagtgcgtgatagcccatatccgg
38
Translation option: L S Y V catcatatc tta tct tac gtt aactcccccgt cagtgcgtg ata gcc cat atc cgg I A H I DNA segments translated to peptide segments; fragment score based on peptide similarity: Calculate probability of finding a fragment of the same length with (at least) the same sum of BLOSUM values
39
P-fragment (in both orientations) L S Y V catcatatc tta tct tac gtt aactcccccgt cagtgcgtg ata gcc cat atc cgg I A H I N-fragment catcatatc ttatcttacgtt aactcccccgtgct || | | | cagtgcgtg atagcccatatc cg For each fragment f three probability values calculated; Score of f based on smallest P value.
40
Alternative fragment weight scores for genomic sequences: Calculate fragment scores at nucleotide level and at peptide level.
41
DIALIGN alignment of human and murine genomic sequences
42
DIALIGN alignment of tomato and Thaliana genomic sequences
43
Alignment of large genomic sequences Evaluation of signal detection methods: Apply method to data with known signals (correct answer is known!). E.g. experimentally verified genes for gene finding TP = true positves = # signals correctly predicted (i.e. signal present) FP = false positives = # signals predicted but wrong (i.e no signal present) TN = true negative = # no signal predicted, no signal present FN = false negative = # no signal predicted, signal present!
44
Alignment of large genomic sequences Sn = Sensitivity = correctly predicted signals / present signals = TP / (TP + FN) Sp = Specificity = correctly predicted signals / predicted signals = TP / (TP + FP)
45
Alignment of large genomic sequences Comprehensive evaluation of signal prediction method: Method assigns score to predictions Apply threshold parameter High threshold -> high specificity (Sp), low sensitivity (Sn) Low threshold -> high sensitivity, low specificity ROC curve („receiver-operator curve“) Vary threshold parameter, plot Sn against Sp
46
Performance of long-range alignment programs for exon discovery (human - mouse comparison)
47
DIALIGN alignment of tomato and Thaliana genomic sequences
48
AGenDA: Alignment-based Gene Detection Algorithm Bridge small gaps between DIALIGN fragments -> cluster of fragments
49
AGenDA: Alignment-based Gene Detection Algorithm Bridge small gaps between DIALIGN fragments -> cluster of fragments Search conserved splice sites and start/stop codons at cluster boundaries to Identify candidate exons
50
AGenDA: Alignment-based Gene Detection Algorithm Bridge small gaps between DIALIGN fragments -> cluster of fragments Search conserved splice sites and start/stop codons at cluster boundaries to Identify candidate exons Recursive algorithm finds biologically consistent chain of potential exons
51
Identification of candidate exons Fragments in DIALIGN alignment
52
Identification of candidate exons Build cluster of fragments
53
Identification of candidate exons Identify conserved splice sites
54
Identification of candidate exons Candidate exons bounded by conserved splice sites
55
Construct gene models using candidate exons Score of candidate exon (E) based on DIALIGN scores for fragments, score of splice junctions and penalty for shortening / extending Find biologically consistent chain of candidate exons (starting with start codon, ending with stop codon, no internal stop codons …) with maximal total score
56
Find optimal consistent chain of candidate exons
60
atggtaggtagtgaatgtga
61
Find optimal consistent chain of candidate exons atggtaggtagtgaatgtga G1G2
62
Find optimal consistent chain of candidate exons Recursive algorithm calculates optimal chain of candidate exons in O(N log N) time
63
Find optimal consistent chain of candidate exons atggtaggtagtgaatgtga G1G2
64
Find optimal consistent chain of candidate exons Recursive algorithm calculates optimal chain of candidate exons in O(N log N) time
65
DIALIGN fragments
66
Candidate exons
67
Gene model
68
Result: 105 pairs of genomic sequences from human and mouse (Batzoglou et al., 2000)
70
AGenDA GenScan 64 % 12 % 17 % Result: 105 pairs of genomic sequences from human and mouse (Batzoglou et al., 2000)
71
Alignment of large genomic sequences DIALIGN used by tracker for phylogenetic footprinting (Prohaska et al., 2004)
72
Alignment of large genomic sequences DIALIGN used by tracker for phylogenetic footprinting (Prohaska et al., 2004) Alignment of Hox gene cluster:
73
Alignment of large genomic sequences DIALIGN used by tracker for phylogenetic footprinting (Prohaska et al., 2004) Alignment of Hox gene cluster: DIALIGN able to identify small regulatory elements, but
74
Alignment of large genomic sequences DIALIGN used by tracker for phylogenetic footprinting (Prohaska et al., 2004) Alignment of Hox gene cluster: DIALIGN able to identify small regulatory elements, but Entire genes totally mis-aligned
75
Alignment of large genomic sequences DIALIGN used by tracker for phylogenetic footprinting (Prohaska et al., 2004) Alignment of Hox gene cluster: DIALIGN able to identify small regulatory elements, but Entire genes totally mis-aligned Reason for mis-alignment: duplications !
76
Alignment of large genomic sequences The Hox gene cluster: 4 Hox gene clusters in pufferfish. 14 genes, different genes in different clusters!
77
Alignment of large genomic sequences The Hox gene cluster: Complete mis-alignment of entire genes!
78
Alignment of sequence duplications S1S1 S2S2
79
S1S1 S2S2 Conserved motivs; no similarity outside motifs
80
Alignment of sequence duplications S1S1 S2S2 Duplication in two sequences
81
Alignment of sequence duplications S1S1 S2S2 Duplication in two sequences
82
Alignment of sequence duplications S1S1 S2S2 Duplication in two sequences
83
Alignment of sequence duplications S1S1 S2S2 Mis-alignment would have lower score!
84
Alignment of sequence duplications S1S1 S2S2 Duplication in one sequence
85
Alignment of sequence duplications S1S1 S2S2 Duplication in one sequence
86
Alignment of sequence duplications S1S1 S2S2 Duplication in one sequence Possible mis-alignment
87
Alignment of sequence duplications S1S1 S2S2 Duplication in one sequence S3S3
88
Alignment of sequence duplications S1S1 S2S2 Duplication in one sequence S3S3
89
Alignment of sequence duplications S1S1 S2S2 Duplication in one sequence S3S3
90
Alignment of sequence duplications S1S1 S2S2 Duplication in one sequence S3S3
91
Alignment of sequence duplications S1S1 S2S2 Consistency problem S3S3
92
Alignment of sequence duplications S1S1 S2S2 More plausible alignment – and higher score : S3S3
93
Alignment of sequence duplications S1S1 S2S2 Consistency problem S3S3
94
Alignment of sequence duplications S1S1 S2S2 Alternative alignment; probably biologically wrong; lower numerical score! S3S3
95
Anchored sequence alignment Biologically meaningful alignment often not possible by automated approaches.
96
Anchored sequence alignment Biologically meaningful alignment not possible by automated approaches. Idea: use expert knowledge to guide alignment procedure
97
Anchored sequence alignment Biologically meaningful alignment not possible by automated approaches. Idea: use expert knowledge to guide alignment procedure User defines a set anchor points that are to be „respected“ by the alignment procedure
98
Anchored sequence alignment NLFVALYDFVASGDNTLSITKGEKLRVLGYNHN IIHREDKGVIYALWDYEPQNDDELPMKEGDCMT
99
Anchored sequence alignment NLFVALYDFVASGDNTLSITKGEKLRVLGYNHN IIHREDKGVIYALWDYEPQNDDELPMKEGDCMT
100
Anchored sequence alignment NLFVALYDFVASGDNTLSITKGEKLRVLGYNHN IIHREDKGVIYALWDYEPQNDDELPMKEGDCMT Use known homology as anchor point
101
Anchored sequence alignment NLFV ALYDFVASGDNTLSITKGEKLRVLGYNHN IIHREDKGVIYALWDYEPQNDDELPMKEGDCMT Use known homology as anchor point
102
Anchored sequence alignment NLFV ALYDFVASGDNTLSITKGEKLRVLGYNHN IIHREDKGVIYALWDYEPQNDDELPMKEGDCMT Use known homology as anchor point Anchor point = anchored fragment (gap-free pair of segments)
103
Anchored sequence alignment NLFV ALYDFVASGDNTLSITKGEKLRVLGYNHN IIHREDKGVIYALWDYEPQNDDELPMKEGDCMT Use known homology as anchor point Anchor point = anchored fragment (gap-free pair of segments) Remainder of sequences aligned automatically
104
Anchored sequence alignment -------NLF VALYDFVASG DNTLSITKGE klrvlgynhn iihredkGVI YALWDYEPQN DDELPMKEGD cmt------- Anchored alignment
105
Anchored sequence alignment NLFVALYDFVASGDNTLSITKGEKLRVLGYNHN IIHREDKGVIYALWDYEPQNDDELPMKEGDCMT GYQYRALYDYKKEREEDIDLHLGDILTVNKGSLVALGFS Anchor points in multiple alignment
106
Anchored sequence alignment NLFV ALYDFVASGDNTLSITKGEKLRVLGYNHN IIHREDKGVIYALWDYEPQND DELPMKEGDCMT GYQYRALYDYKKEREEDIDLHLGDILTVNKGSLVALGFS Anchor points in multiple alignment
107
Anchored sequence alignment -------NLF V-ALYDFVAS GD-------- NTLSITKGEk lrvLGYNhn iihredkGVI Y-ALWDYEPQ ND-------- DELPMKEGDC MT------- -------GYQ YrALYDYKKE REedidlhlg DILTVNKGSL VA-LGFS-- Anchored multiple alignment
108
Algorithmic questions Goal: Find optimal alignment (=consistent set of fragments) under costraints given by user- specified anchor points!
109
Additional input file with anchor points: 1 3 215 231 5 4.5 2 3 34 78 23 1.23 1 4 317 402 8 8.5 Algorithmic questions
110
NLFVALYDFVASGDNTLSITKGEKLRVLGYNHN IIHREDKGVIYALWDYEPQNDDELPMKEGDCMT GYQYRALYDYKKEREEDIDLHLGDILTVNKGSLVALGFS
111
Additional input file with anchor points: 1 3 215 231 5 4.5 2 3 34 78 23 1.23 1 4 317 402 8 8.5 Algorithmic questions
112
Additional input file with anchor points: 1 3 215 231 5 4.5 2 3 34 78 23 1.23 1 4 317 402 8 8.5 Sequences Algorithmic questions
113
Additional input file with anchor points: 1 3 215 231 5 4.5 2 3 34 78 23 1.23 1 4 317 402 8 8.5 Sequences start positions Algorithmic questions
114
Additional input file with anchor points: 1 3 215 231 5 4.5 2 3 34 78 23 1.23 1 4 317 402 8 8.5 Sequences start positions length Algorithmic questions
115
Additional input file with anchor points: 1 3 215 231 5 4.5 2 3 34 78 23 1.23 1 4 317 402 8 8.5 Sequences start positions length score Algorithmic questions
116
Requirements: Anchor points need to be consistent! – if necessary: select consistent subset from user-specified anchor points
117
Algorithmic questions atctaatagttaaactcccccgtgcttag cagtgcgtgtattactaacggttcaatcgcg caaagagtatcacccctgaattgaataa
118
Algorithmic questions atctaatagttaaactcccccgtgcttag cagtgcgtgtattactaacggttcaatcgcg caaagagtatcacccctgaattgaataa
119
Algorithmic questions atctaatagttaaactcccccgtgcttag cagtgcgtgtattactaacggttcaatcgcg caaagagtatcacccctgaattgaataa Inconsistent anchor points!
120
Algorithmic questions atctaat---agttaaactcccccgtgcttag Cagtgcgtgtattac-taacggttcaatcgcg caaagagtatcacccctgaattgaataa Inconsistent anchor points!
121
Algorithmic questions Requirements: Anchor points need to be consistent! – if necessary: select consistent subset from user-specified anchor points
122
Algorithmic questions Requirements: Anchor points need to be consistent! – if necessary: select consistent subset from user-specified anchor points Find alignment under constraints given by anchor points!
123
Algorithmic questions Use data structures from multiple alignment
124
Algorithmic questions atctaatagttaaactcccccgtgcttag cagtgcgtgtattactaacggttcaatcgcg caaagagtatcacccctgaattgaataa
125
Algorithmic questions atctaatagttaaactcccccgtgcttag cagtgcgtgtattactaacggttcaatcgcg caaagagtatcacccctgaattgaataa Greedy procedure for multiple alignment
126
Algorithmic questions atctaatagttaaactcccccgtgcttag cagtgcgtgtattactaacggttcaatcgcg caaagagtatcacccctgaattgaataa Greedy procedure for multiple alignment
127
Algorithmic questions atctaatagttaaactcccccgtgcttag cagtgcgtgtattactaacggttcaatcgcg caaagagtatcacccctgaattgaataa Question: which positions are still alignable ?
128
Algorithmic questions atctaatagttaaactcccccgtgcttag S i cagtgcgtgtattactaacggttcaatcgcg caaagagtatcacccctgaattgaataa x For each position x and each sequence S i exist an upper bound ub(x,i) and a lower bound lb(x,i) for residues y in S i that are alignable with x
129
Algorithmic questions atctaatagttaaactcccccgtgcttag S i cagtgcgtgtattactaacggttcaatcgcg caaagagtatcacccctgaattgaataa x For each position x and each sequence S i exist an upper bound ub(x,i) and a lower bound lb(x,i) for residues y in S i that are alignable with x
130
Algorithmic questions atctaatagttaaactcccccgtgcttag S i cagtgcgtgtattactaacggttcaatcgcg caaagagtatcacccctgaattgaataa x ub(x,i) and lb(x,i) updated during greedy procedure
131
Algorithmic questions atctaatagttaaactcccccgtgcttag S i cagtgcgtgtattactaacggttcaatcgcg caaagagtatcacccctgaattgaataa x Initial values of lb(x,i), ub(x,i)
132
Algorithmic questions atctaatagttaaactcccccgtgcttag S i cagtgcgtgtattactaacggttcaatcgcg caaagagtatcacccctgaattgaataa x ub(x,i) and lb(x,i) updated during greedy procedure
133
Algorithmic questions atctaatagttaaactcccccgtgcttag S i cagtgcgtgtattactaacggttcaatcgcg caaagagtatcacccctgaattgaataa x ub(x,i) and lb(x,i) updated during greedy procedure
134
Algorithmic questions Anchor points treated like fragments in greedy algorithm:
135
Algorithmic questions Anchor points treated like fragments in greedy algorithm: Sorted according to user-defined scores
136
Algorithmic questions Anchor points treated like fragments in greedy algorithm: Sorted according to user-defined scores Accepted if consistent with previously accepted anchors
137
Algorithmic questions Anchor points treated like fragments in greedy algorithm: Sorted according to user-defined scores Accepted if consistent with previously accepted anchors ub(x,i) and lb(x,i) updated during greedy procedure
138
Algorithmic questions Anchor points treated like fragments in greedy algorithm: Sorted according to user-defined scores Accepted if consistent with previously accepted anchors ub(x,i) and lb(x,i) updated during greedy procedure Resulting values of ub(x,i) and lb(x,i) used as initial values for alignment procedure
139
Algorithmic questions atctaatagttaaactcccccgtgcttag S i cagtgcgtgtattactaacggttcaatcgcg caaagagtatcacccctgaattgaataa x Initial values of lb(x,i), ub(x,i)
140
Algorithmic questions atctaatagttaaactcccccgtgcttag S i cagtgcgtgtattactaacggttcaatcgcg caaagagtatcacccctgaattgaataa x Initial values of lb(x,i), ub(x,i) calculated using anchor points
141
Algorithmic questions Ranking of anchor points to prioritize anchor points, e.g. anchor points from verified homologies -- higher priority automatically created anchor points (using CHAOS, BLAST, … ) -- lower priority
142
Application: Hox gene cluster
143
Use gene boundaries as anchor points
144
Application: Hox gene cluster Use gene boundaries as anchor points + CHAOS / BLAST hits
145
Application: Hox gene cluster no anchoring anchoring Ali. Columns 2 seq 2958 3674 3 seq 668 1091 4 seq 244 195 Score 1166 1007 CPU time 4:22 0:19
146
Application: Hox gene cluster Example: Teleost Hox gene cluster:
147
Application: Hox gene cluster Example: Teleost Hox gene cluster: Score of anchored alignment 15 % higher than score of non-anchored alignment !
148
Application: Hox gene cluster Example: Teleost Hox gene cluster: Score of anchored alignment 15 % higher than score of non-anchored alignment ! Conclusion: Greedy optimization algorithm does a bad job!
149
Application: Improvement of Alignment programs Two possible reasons for mis-alignments:
150
Application: Improvement of Alignment programs Two possible reasons for mis-alignments: Wrong objective function: Biologically correct alignment gets bad numerical score
151
Application: Improvement of Alignment programs Two possible reasons for mis-alignments: Wrong objective function: Biologically correct alignment gets bad numerical score Bad optimization algorithms: Biologically correct alignment gets best numerical score, but algorithm fails to find this alignment
152
Application: Improvement of Alignment programs Two possible reasons for mis-alignments: Anchored alignments can help to decide
153
Application: RNA alignment
154
aa----CCCC AGC---GUAa gucgcuaucc a cacucuCCCA AGC---GGAG Aac------- - ccg----CCA AaagauGGCG Acuuga---- - non-anchored alignment
155
Application: RNA alignment aa----CCCC AGC---GUAa gucgcuaucc a cacucuCCCA AGC---GGAG Aac------- - ccg----CCA AaagauGGCG Acuuga---- - structural motif mis-aligned
156
Application: RNA alignment aaCCCCAGCG UAAGUCGCUA UCca-- --CACUCUCC CAAGCGGAGA AC---- ----CCGCCA AAAGAUGGCG ACuuga 3 conserved nucleotides as anchor points
157
WWW interface at GOBICS (Göttingen Bioinformatics Compute Server)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.