Download presentation
Presentation is loading. Please wait.
1
Evidences of Risk-Return Trade-Off in IBOVESPA Using High Frequency Data Breno Pinheiro Néri bneri@fgvmail.br www.fgv.br/aluno/bneri Hilton Hostalácio Notini hilton@fgvmail.br Escola de Pós-Graduação em Economia Fundação Getúlio Vargas
2
June 25, 2015 Risk-Return Trade-Off2 ICAPM Introduction Omnibus Definitions Data Results Merton (1973)
3
June 25, 2015 Risk-Return Trade-Off3 Actually, is there a trade-off? Introduction Omnibus Definitions Data Results Positive but not statistically significant: Baillie and DeGennaro (1990) French, Schwert and Stambaugh (1987) Campbell and Hentschel (1992) Negative and statistically significant: Campbell (1987) Nelson (1991) Depends on the method: Glosten, Jagannathan and Runkle (1993) Harvey (2001) Turner, Startz and Nelson (1989)
4
June 25, 2015 Risk-Return Trade-Off4 Mixed Data Sampling (MIDAS) Introduction Omnibus Definitions Data Results Ghysels, Santa-Clara and Valkanov (2002)
5
June 25, 2015 Risk-Return Trade-Off5 Note on notation Introduction Omnibus Definitions Data Results
6
June 25, 2015 Risk-Return Trade-Off6 Note on notation Introduction Omnibus Definitions Data Results
7
June 25, 2015 Risk-Return Trade-Off7 High Frequency Data Introduction Omnibus Definitions Data Results São Paulo Stock Exchange Index (IBOVESPA) 01/02/1998 – 07/19/2001 (T=867) Russian and Latin American crises, 1998 Blast of the technology-stock market bubble, 1999 10h00 – 18h15, each 15 min Max N t =34 Typical values: 29 – 33 350 days (more than 40%) with 29 observations Total of observations: 26,030
8
June 25, 2015 Risk-Return Trade-Off8 Histogram of N Introduction Omnibus Definitions Data Results
9
June 25, 2015 Risk-Return Trade-Off9 Typos Treating Introduction Omnibus Definitions Data Results Inverted Digits: 48xx.xx -> 84xx.xx Missing Digits: 14xx.xx -> 174xx.xx Missing Decimal Point: 10xxxxx -> 10xxx.xx Atypical Digit: 67xx.xx -> 97xx.xx
10
June 25, 2015 Risk-Return Trade-Off10 Unit Root ADF test Introduction Omnibus Definitions Data Results SeriesTest StatisticP-Value P 1,t -1.50620.7873 P Nt,t -1.52780.7782 R t+1 -8.2384<0.01 Rt*Rt* -8.5292<0.01 [σ]t2[σ]t2 -5.8074<0.01 [σ]t[σ]t -4.6115<0.01
11
June 25, 2015 Risk-Return Trade-Off11 Descritive Statistics Introduction Omnibus Definitions Data Results SeriesR t+1 Rt*Rt* [σ]t2[σ]t2 [σ]t[σ]t Mean0.00030.00020.00050.0195 Variance0.00800.0078<0.00010.0014 Skewness1.14991.20146.93873.1003 Excess Kurtosis15.937317.540666.787214.3488 Minimum-0.1723 <0.00010.0048 1 st Quartil-0.0144-0.01380.00020.0128 Median0.00070.00000.00030.0163 3 rd Quartil0.01470.01400.00050.0219 Maximum0.28820.29190.01390.1178 Observations866867
12
June 25, 2015 Risk-Return Trade-Off12 Histograms Introduction Omnibus Definitions Data Results
13
June 25, 2015 Risk-Return Trade-Off13 No Serial Correlation Introduction Omnibus Definitions Data Results RegressionR t+1 =β 0 +β 1 R t +ε t+1 R t * =β 0 +β 1 R t-1 * +ε t F-Statistic (P-Value)0.309 (0.579)0.003 (0.960) OLS Estimatorβ0β0 β1β1 β0β0 β1β1 Estimative0.0000.0190.000-0.002 Standard Error0.0010.0340.0010.034 T-Statistic0.3060.5560.125-0.051 P-Value0.7600.5780.9000.960
14
June 25, 2015 Risk-Return Trade-Off14 Risk-Return Trade-Off Introduction Omnibus Definitions Data Results RegressionR t+1 =β 0 +β 1 [σ] t 2 +ε t+1 R t+1 =β 0 +β 1 [σ] t +ε t+1 F-Statistic (P-Value)8.181 (0.004)5.294 (0.022) OLS Estimatorβ0β0 β1β1 β0β0 β1β1 Estimative-0.0012.876-0.0030.188 Standard Error0.0011.0060.0020.082 T-Statistic-1.0762.860-1.8032.301 P-Value0.2820.0040.0720.022
15
June 25, 2015 Risk-Return Trade-Off15 Risk-Return Trade-Off Introduction Omnibus Definitions Data Results RegressionR t * =β 0 +β 1 [σ] t-1 2 +ε t R t * =β 0 +β 1 [σ] t-1 +ε t F-Statistic (P-Value)7.725 (0.006)4.918 (0.027) OLS Estimatorβ0β0 β1β1 Β0Β0 β1β1 Estimative-0.0012.765-0.0040.179 Standard Error0.0010.9950.0020.081 T-Statistic-1.2152.779-1.8362.218 P-Value0.2250.0060.0670.027
16
June 25, 2015 Risk-Return Trade-Off16 Risk-Return Trade-Off Introduction Omnibus Definitions Data Results Regressions 1 and 2R t+1 =β 0 +β 1 [σ] t-1 2 +ε t+1 R t * =β 0 +β 1 [σ] t-2 2 +ε t F-Statistic (P-Value)18.270 (0.000)18.320 (0.000) OLS Estimatorβ0β0 β1β1 Β0Β0 β1β1 Estimative-0.0024.276-0.0024.234 Standard Error0.0011.0000.0010.989 T-Statistic-1.7624.275-1.9444.280 P-Value0.0780.0000.0520.000
17
June 25, 2015 Risk-Return Trade-Off17 Analyses of Residuals Introduction Omnibus Definitions Data Results
18
June 25, 2015 Risk-Return Trade-Off18 Other Analyses Introduction Omnibus Definitions Data Results We cannot reject (even at 10%) the Ljung-Box and the Box-Pierce tests for independence of the residuals. Regression of the residuals on its lags are not significant. Regression of the residuals on the square of its lags are not significant (no ARCH effect). We reject, at 5%, Teräsvirta and White neural-network tests for nonlinearity. Information Criteria: two covariates, maximum. No correlation between R t+1 e R t * nor R t e R t+1 *.
19
June 25, 2015 Risk-Return Trade-Off19 Leverage Effect Introduction Omnibus Definitions Data Results Regression[σ] t+1 =β 0 +β 1 I{R t <0}+ε t+1 [σ] t+1 =β 0 +β 1 I{R t * <0}+ε t+1 F-Statistic (P-Value)21.070 (0.000)17.330 (0.000) OLS EstimatorΒ0Β0 β1β1 Β0Β0 β1β1 Estimative0.0180.0040.0180.003 Standard Error0.001 T-Statistic32.0304.59031.9904.163 P-Value0.000
20
June 25, 2015 Risk-Return Trade-Off20 Conclusion It has been difficult to find a positive correlation between risk and return in the literature. MIDAS Regression has been used to find this correlation. In Brazil, we could find this trade-off by applying OLS to high frequence data. This maybe due to both the lack of liquidity and the lack of access to intra day data. The leverage effect is also present. Next step: is it possible to beat IBOVESPA using this correlation?
21
Thank you! Breno Pinheiro Néri bneri@fgvmail.br www.fgv.br/aluno/bneri Hilton Hostalácio Notini hilton@fgvmail.br Escola de Pós-Graduação em Economia Fundação Getúlio Vargas
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.