Download presentation
Presentation is loading. Please wait.
1
1 MCR-ALS analysis using initial estimate of concentration profile by EFA
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10
10 Deducing Chemical Rank (Factor Analysis) Scree plot Indicator function Loading plot Eigen-value ratio …
11
11
12
12
13
13
14
14 Calculating Initial estimate by EFA
15
15
16
16
17
17
18
18
19
19
20
20
21
21
22
22
23
23
24
24
25
25
26
26 1.2
27
27 1.2
28
28 1.2
29
29 1.2
30
30 1.2
31
31
32
32
33
33
34
34
35
35
36
36 Source of differences? Rotational ambiguity PCA: D=TP Beer-Lambert: D=CS In MCR we want to reach from PCA to Beer-Lambert D= TP = TRR -1 P, R: rotation matrix D = (TR)(R -1 P) C=TR, S=R -1 P (R 2)(0.5 R -1 ) = RR -1
37
37 How can we overcome this problem? More extra constraints: 1.Selectivity 2.Peak Shape 3.Matrix augmentation 4.Combined hard model
38
38 Implementation of selectivity in pure spectra If we know the pure spectrum of the reactant
39
39
40
40 1.2
41
41
42
42
43
43
44
44 Implementation of selectivity in concentration profile At the beginning of reaction only reactant is existed and the other species are absent
45
45
46
46 1.2
47
47
48
48
49
49 Two other experiments
50
50 Next step?
51
51 Matrix augmentation 3 kinetic experiments run at three different experimental conditions D1 D2 D3
52
52 Steps for column-wise data augmentation 1. calculate initial estimate of concentration for each data set [e1,ef1,ef2]=efa(d1); [e2,ef2,ef2]=efa(d2); [e3,ef3,ef3]=efa(d3); 2. produce a matrix of initial estimate e=[e1;e2;e3]; 3. collect all data matrices in a single matrix d=[d1;d2;d3];
53
53
54
54
55
55
56
56
57
57
58
58 Analysis of a single data matrix Analysis of augmented data matrices
59
59
60
60
61
61
62
62
63
63
64
64
65
65
66
66
67
67
68
68
69
69
70
70
71
71 Original Values: k 1 =0.2 k 2 =0.02 Original Calculated k 1 k 2 k 1 k 2 R1 0.20 0.02 0.22 0.017 R2 0.30 0.08 0.31 0.072 R3 0.45 0.32 0.45 0.29
72
72 Row and column wise data augmentation If the experiments are also monitored by spectroflourimetric method Da1 Da2 Da3 Df1 Df2 Df3
73
73
74
74
75
75
76
76
77
77
78
78
79
79
80
80
81
81
82
82
83
83
84
84
85
85
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.