Download presentation
Presentation is loading. Please wait.
1
Binomial Theorem
2
Go to slide 11
3
Introduction
4
Notice
5
Using Sigma Notation
6
Example
7
The Special Case ( 1 + x ) n
8
Example (1 + x ) 6
9
What about when n is not a natural number?
10
The Binomial Series
11
Let f(x) = ( 1 + x ) n, n ЄR-(NU{0}) Let’s find the Maclaurin series for f f (k) (0)f (k) (x)k 1( 1 + x ) n 0 nn( 1 + x ) n-1 1 n(n-1)n(n-1)( 1 + x ) n-2 2 n(n-1)(n-2)n(n-1)(n-2)( 1 + x ) n-3 3 n(n-1)(n-2)(n-3)n(n-1)(n-2)(n-3)( 1 + x ) n-4 4 n(n-1)(n-2)(n-3)….[n-(k-1)] n(n-1)(n-2)…..….[n-(k-1)] ( 1 + x ) n-k k
12
Thus the Maclaurin series for (1+x) n
13
Thus the Maclaurin series for f
14
Finding the interval of convergence of this series:
15
Example Expand and then use the expansion to obtain a rough estimation of 1/√2
16
Solution
18
Approximating 1/√2
19
Homework
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.