Presentation is loading. Please wait.

Presentation is loading. Please wait.

Millimeter-wave Spectroscopy of the Tunneling-rotation Transitions of the D 2 CCD radical M. Ohtsuki, M. Hayashi, K. Harada, K. Tanaka Department of Chemistry,

Similar presentations


Presentation on theme: "Millimeter-wave Spectroscopy of the Tunneling-rotation Transitions of the D 2 CCD radical M. Ohtsuki, M. Hayashi, K. Harada, K. Tanaka Department of Chemistry,"— Presentation transcript:

1 Millimeter-wave Spectroscopy of the Tunneling-rotation Transitions of the D 2 CCD radical M. Ohtsuki, M. Hayashi, K. Harada, K. Tanaka Department of Chemistry, Faculty of Sciences, Kyushu University International Symposium on Molecular Spectroscopy 63 rd –Meeting The Ohio State University

2 Introduction C C H HH C C H H H α H 2 CCH  E 0 = 16.271 GHz h = 1580 cm -1 J. Chem. Phys. 120, 3604 (2004) Previous Work  H 2 CCD  E 0 = 1.186 GHz h = 1520 cm -1 D D D 2 CCD  E 0 = ? h = ? Present Work D D D D E0E0 h  E 0 :Tunneling splitting h:Potential Barrier height 0+0+ 00 h < 1800 cm -1

3 0 00 1 01 2 02 3 03 2 11 2 12 1 10 1 11 0 00 1 01 2 02 3 03 2 11 2 12 1 10 1 11 K a = 0 K a = 1 K a = 0 K a = 1 0+0+ 00 N KaKcKaKc a-type transition E. Kim, et al., J.C.P 116, 10713(2002) E0E0 CC DD DD DD a b Introduction -Pure rotatonal Transition-  a =  0.1611 D para ortho

4 b-type transition R(0) Q(1) R(1) E0E0 CC DD DD DD a b 0 00 1 01 2 02 3 03 2 11 2 12 1 10 1 11 0 00 1 01 2 02 3 03 2 11 2 12 1 10 1 11 K a = 0 K a = 1 K a = 0 K a = 1 0+0+ 00 Introduction -Tunneling-rotation Transition-  b =  0.5863 D para ortho

5 UV laser 193 nm Sample (Ar : 7 atm + H 2 : 3 atm) + D 2 CCDCl : 0.2 atm CC D D D Cl Photolysis ArF Experimental setup T rot =20 K CC D D D D DD CC Millimeter-wave 100 ~ 200 GHz White-type multi-reflection cell (10 round trips)

6 Obs. 143.5143.55143.45 Frequency(MHz) Observed Tunneling-rotation Spectra R(0)(0  ←0 + ) J :0.5 ←0.5 J :1.5 ←0.5 Para:I  =1 Calc.

7 N S F F1F1 J II II N : Rotation S : Electron spin I : Nuclear spin Coupling of Angular Momenta (0  )1 11 -(0 + )0 00 I  = 1 C D C D D S = 0.5 I  = 0,1,2 S II II Para : I  =1 Ortho : I  =0,2

8 Ortho:I  = 0,2 Observed Tunneling-rotation Spectra R(0)(0  ←0  ) Obs. J :0.5 ←0.5J :1.5 ←0.5 142.00141.90 (GHz) 141.95 Calc. I  = 2 Calc. I  = 0

9 Frequency (GHz) Q(1) R(0) R(1) Q(2) 120 100 160 180 2E02E0 140 GHz (0 + ←0 - ) (0 - ←0 + ) 1.54GHz 140 Q(3) Observed Tunneling-rotation Spectra 00 0+0+ E0E0 6:36:3 6:36:3 ortho 200 para

10 Constants (MHz) (average)FTMW (MHz) (average) E0 E0 771.858 (24)  A122 560.835 (50)  B 24 264.477 (38)(B + C)/2 = 22 220.523 32(25) C 20 175.989 (38)  aa 120.666 (24)    bb +  cc )/2  24.11 (33)  24.095 1(19) a F (  ) 5.872 (11) 5.874 5(27) T aa(  ) 4.130 (14) 4.123 5(42) T bb(  ) 0.97 (11)  a F (  ) 21.617 (32) 21.608 7(111) T aa(  ) 1.302 9 (80) 1.293 5(23) T bb(  )  0.274 (56)   a F (  ) 8.5 (13)   = 160.8kHz Data:93 ( MMW(61) + FTMW(32)) Molecular Constants Off-diagonal Fermi interaction constant average : (0 + + 0  ) / 2

11 Potential Barrier Height C C D DD C C D D D  min  43.4   E 0 (MHz) h (cm -1 ) D 2 CCD 771.858 (24) 1549 H 2 CCD1 186.820 (21)1520 H 2 CCH16 271.842 9(59)1580 V(  ) =  V 2  2 + V 4  4 h = V22V22 4V 4 *  min is fixed (CCSD(T)/TZ2P) (Chem. Phys.206, 43 (1996)) E0E0 h  0+0+ 00  min

12 Ortho-Para Interaction 0 00 1 01 1 10 1 11 0 00 1 01 1 10 1 11 K a = 0 K a = 1 K a = 0 K a = 1 0+0+ 00 paraortho para ortho R(0) Tunneling-rotation Transitions (  I  = 0) Ortho-Para Interaction (  I  = 1) Ortho (I  = 0, 2) Para ( I  = 1)  E 0 = 771MHz  = 0.094 MHz  =  0.094 MHz + + + +     1 2 aF S IaF S I H F  =

13 ortho-para interaction a F  = (a F  + a F  )/2  a F  = a F   a F   I  = I   I  (MHz)D 2 CCDH 2 CCD  a F  8.5 (13)67.14 (67)   771.858 (24)1 186.820 (21)  (interaction) 0.0940.94   (mixing ratio) 0.012 %0.080 % I  = I   I  Ortho-Para Interaction (  I  = 1)   0 + (1 11 ) 0  (1 11 ) H F (  ) = a F (  ) S I  + a F (  ) S I  = a F (  ) S  I  + (  a F (  ) S  I  )/2

14 ○ Tunneling-rotation Transition of D 2 CCD radical was observed and assigned. ○ Tunneling splitting (  E 0 ) was determined to be 771.858 (24) MHz. ○ Potential barrier height(h) was estimated to be 1549 cm  1. Conclusions ○ Off-diagonal Fermi interaction term  a F , was determined to be 8.5 (13) MHz at D 2 CCD.

15 Thank you for your attention!!

16 B.E.Turner,et al,. ApJ. 561. L207.2001. Sagittarius B2(N) Introduction -Observation at Interstellar region- H O C H C H H Vinyl alcohol

17 Horse head Nebula at Orion [DCO + ]/[HCO + ] ≧ 0.02[ND 3 ]/[NH 3 ] ≒ 10 -3 ⇒ Deuterium condensation Deuterium Condensation DCO + is 10 3 times ND 3 is 10 11 times D/H =10   Generally  D 2 CCD radical is able to be observed Interstellar region 1856.06 cm  1 H 2 CCH D 2 CCD 2650 K Zero point energy

18 B3LYP/6-31++G(d,p)(Basiuk, V. A. et al. IJQC, 97, 713(2004)) TS 0 (kcal/mol) -140.1 -279.6 -278.2 -326.3 -436.3 1.6 kcal/mol -218.2 -318.0 +OH +H C C C H C O C H C H O C H C H H H O C H C H H Vinyl alcohol Sagittarius B2(N) Example -Calculation for Energy Diagram- C 2 H 2 + H → H 2 CCH This reaction is inhibited by potential barrier at 4K. C H C H H C H C H Vinyl will be formed in hot molecular cloud or at surface of dust.

19 Experiment D C D C D Cl D C D C D D C D C D Vinyl-d 3 chloride Vinyl-d 3 radical ○ Vinyl radical was produced by 193 nm excimer laser photolysis in the supersonic jet. ○ Millimeter-wave goes ten round trip in the white type cell. ○ Rotational temperature is estimated to be 20 K. ○ Frequency region is between 100 GHz and 200 GHz. Photolysis Ar-F :193nm

20 Obs. J :0.5 ←0.5 J :1.5 ←0.5 143500143550143450 Frequency(MHz) Observed Tunneling Rotation Spectra Para:I  =1 R(0)(0  ←0 + )

21 Frequency (MHz) 143460143500143540 Experiment’s Result -R(0) (0  ←0  )- Only signals of D 2 CCD Simulation Including a precursors Precursors

22 100200300GHz C H C H H Q-branch R-branch C D C H H C D C D D Observed Spectra 2E02E0 2E02E0 2E02E0 32.5 GHz 2.3 GHz 1.54 GHz 0+←00+←0 0←00←0

23 The signal of product by Photolysis Excimer laser / Off Excimer laser / On UV laser 193 nm Precursor 0 123 (ms) Excimer laser / On and Off 400ms Time resolved signal If the signal is precursor → Signal is appeared every time If the signal is product → Excimer laser is on → There is a signal !! Excimer laser is off → There is no signal !!

24 Nuclear spin of Deuteron I = 1 → Boson Ψ=ψeψvψrψnΨ=ψeψvψrψn CC D D D a b  position  position KaKa ψeψe ψvψv ψrψr ψnψn Ψ 0+0+ evenassas para oddasass ortho 0-0- evenaasss ortho oddaaaas para C 2v (M) X 2 B 2 Bose-Einstein statistics I  =0, 2 I  =1 Nuclear spin statistics

25 Discussion -Potential Barrier- V(  ) =  V 2  2 + V 4  4 h = V22V22 4V 4 ※ Structure parameter is fixed by CCSD(T) calculation D 2 CCD H 2 CCD H 2 CCH Potential Barrier (cm -1 ) 1549 1520 1580  E 0 (MHz) Tunneling( /ns) 771.844 (23)1.296 1 163.845 (16)0.859 16 271.842 9 (59)0.061 0+0+ 0   min 00 h  C C D D D D 2 CCD H 2 CCD H 2 CCH

26 Potential barrier height C C H HH C C H H H C C H HH R(CC) = 1.304 + 0.017429  2 R(CH  ) = 1.064 + 0.0244  2 R(CH  ) =1.089  0.0033   0.0061  2 R(CH  ) =1.089 + 0.0033   0.0061  2 ∠ CCH  = 122.2 + 0.594081   0.95858  2 ∠ CCH  = 122.2  0.594081   0.95858  2 ※ Structure parameter is fixed by CCSD(T) calculation CCSD(T)/TZ2P:(Chem. Phys. 206, 43 (1996))  C C H H H   min 

27 Fermi contact interaction constants D 2 CCDH 2 CCH a F  ) (MHz) 21.594 (28)143.353 (40) a F (  ) (MHz) 5.879 9 (70)37.019 2(120) a F (  )D / a F (  )H  a F (  )D / a F (  )H 0.158 84 (20) = 0.153 5 II I 8 3  g s   (0) | 2 a F = a F (  )H a F (  )D = IDID IDID IHIH IHIH

28 69.58 (48) 142.96 (12) Present aF()aF() da F (  ) H 2 CCD S  I  S I  (MHz) Ar Matrix 73.7 147.8 69.58 (48) 142.96 (12) Present aF()aF() aF()aF() H 2 CCD S  I  S I  (MHz) Ar Matrix 73.7 147.8 19.8(30) 21.594 (28) Present aF()aF() aF()aF() D 2 CCD S・IS・I S I  (MHz) Ar Matrix 11.3 21.7 Fermi contact interaction constants H trans H cis C C HH Ar ESR (JACS. 94, 5950 (1972))    a F = a F trans - a F cis a F = (a F trans + a F cis )/2

29  cc / C (×10 -3 ) H 2 CCH  D 2 CCD  1.194(36) Discussion -Molecular Constants-  H 2 CCD C H C H H C D C H H C D C D D c c c a a a About c-axis Mass of atom has little influence to the c-axis. → c-axis is out-of-plane, so angle between c-axis and C=C bond is not changed. About a-axis Mass of atom has influence to the a-axis. → a-axis is in-plane, so angle between a-axis and C=C bond is changed. The ratio is matched in 3 

30 Constants (MHz) (a) : (dif)FTMW (MHz) (b) (dif) A-3.7  B-0.52422(B + C)/2  0.523 32(49) C-0.52422  aa 0   bb +  cc )/2 -0.023 3  0.002 3(39) a F (  ) 0.001 20.001 2(54) T aa(  ) -0.013 6  0.013 6 (84) T bb(  ) 0  a F (  ) -0.027 6  0.027 6(224) T aa(  ) -0.011  0.001 1(47) T bb(  ) 0   aa(  ) 0  Fixed Parameter (a)Fixed Parameter (b)Observed


Download ppt "Millimeter-wave Spectroscopy of the Tunneling-rotation Transitions of the D 2 CCD radical M. Ohtsuki, M. Hayashi, K. Harada, K. Tanaka Department of Chemistry,"

Similar presentations


Ads by Google