Download presentation
Presentation is loading. Please wait.
1
Predicate Abstraction for Software and Hardware Verification Himanshu Jain Model checking seminar April 22, 2005
2
Introduction Scalable software verification Properties Array bounds check, division by zero Pointer safety Assertion checking Lock and unlocking Focus on partial specifications
3
Predicate Abstraction Extract a finite state model from an infinite state system Used to prove assertions or safety properties Successfully applied for verification of C programs SLAM (used in windows device driver verification) MAGIC, BLAST, F-Soft
4
Example for Predicate Abstraction int main() { int i; i=0; while(even(i)) i++; } + p 1 i=0 p 2 even(i) = void main() { bool p1, p2; p1=TRUE; p2=TRUE; while(p2) { p1=p1?FALSE:nondet(); p2=!p2; } } PredicatesC programBoolean program [Ball, Rajamani ’01] [Graf, Saidi ’97]
5
Computing Predicate Abstraction How to get predicates for checking a given property? How do we compute the abstraction? Predicate Abstraction is an over-approximation How to refine coarse abstractions
6
Counterexample Guided Abstraction Refinement loop C Program Abstract model Model Checker Abstraction refinement Verification Initial Abstraction No error or bug found Simulator Property holds Simulation sucessful Bug found Refinement Spurious counterexample
7
Abstraction 1 : x = ctr; 2 : y = ctr + 1; 3 : if (x = i-1){ 4 : if (y != i){ ERROR: } 1 : skip; 2 : skip; 3 : if (*){ 4 : if (*){ ERROR: } Abstract C programNo predicates available currently
8
Checking the abstract model 1 : skip; 2 : skip; 3 : if (*){ 4 : if (*){ ERROR: } Abstract model has a path leading to error state Is ERROR reachable? yes
9
Simulation 1 : x = ctr; 2 : y = ctr + 1; 3 : assume(x == i-1) 4 : assume (y != i) 1 : skip; 2 : skip; 3 : if (*){ 4 : if (*){ ERROR: } Does this correspond to a real bug? Not possible Concrete trace Check using a SAT solver
10
Refinement 1 : x = ctr; 2 : y = ctr + 1; 3 : assume(x == i-1) 4 : assume (y != i) 1 : skip; 2 : skip; 3 : if (*){ 4 : if (*){ ERROR: } Spurious Counterexample Initial abstraction
11
Refinement 1 : x = ctr; 2 : y = ctr + 1; 3 : assume(x == i-1) 4 : assume (y != i) 1 : skip; 2 : skip; 3 : if (*){ 4 : if (b0){ ERROR: } boolean b0 : y != i
12
Refinement 1 : x = ctr; 2 : y = ctr + 1; 3 : assume(x == i-1) 4 : assume (y != i) 1 : skip; 2 : skip; 3 : if (b1){ 4 : if (b0){ ERROR: } boolean b0 : y != i boolean b1 : x== i-1
13
Refinement 1 : x = ctr; 2 : y = ctr + 1; 3 : assume(x == i-1) 4 : assume (y != i) 1 : skip; 2 : b0 = b2; 3 : if (b1){ 4 : if (b0){ ERROR: } } boolean b0 : y != i boolean b1 : x== i-1 boolean b2 : ctr + 1 ! = i Weakest precondition of y != i
14
Refinement 1 : x = ctr; 2 : y = ctr + 1; 3 : assume(x == i-1) 4 : assume (y != i) 1 : b1 = b3; 2 : b0 = b2; 3 : if (b1){ 4 : if (b0){ ERROR: } boolean b0 : y != i boolean b1 : x== i-1 boolean b2 : ctr + 1 ! = i boolean b3: ctr == i -1
15
Refinement 1 : b1 = b3; 2 : b0 = b2; 3 : if (b1){ 4 : if (b0){ ERROR: } boolean b0 : y != i boolean b1 : x== i-1 boolean b2 : ctr + 1 ! = i boolean b3: ctr == i -1 b2 and b3 are mutually exclusive. b2 =1, b3 = 0 b2 =0, b3 = 1 What about initial values of b2 and b3? So system is safe!
16
Tools for Predicate Abstraction of C SLAM at Microsoft Used for verifying correct sequencing of function calls in windows device drivers MAGIC at CMU Allows verification of concurrent C programs Found bugs in MicroC OS BLAST at Berkeley Lazy abstraction, interpolation SATABS at CMU Computes predicate abstraction using SAT Can handle pointer arithmetic, bit-vectors F-Soft at NEC Labs Localization, register sharing
17
Applications of Predicate Abstraction in Hardware Verification
18
System on chip design Increase in complexity Gate level (netlists) Structural Behavioral/RTL ………… Level Number of components 10E7 10E5 10E3 10E0 Abstraction System Level
19
Introduction Emergence of system design languages HardwareC, SpecC, Handel-C, and SystemC Based on C / C++ Allows joint modeling of both hardware and software components of a system Support for bit vectors, concurrency, synchronization, exception handling, timing
20
Verification support Most model-checkers used in hardware industry work at netlist level Higher abstraction levels offered by languages like SpecC or RTL Verilog are not yet supported Languages like SpecC are more closer to concurrent software Verification tools must reason about: Programming languages constructs Concurrency Pointers, Objects Bit vector operations like concatenation, extraction
21
Why predicate abstraction Many properties depend on relationship between registers, and not the values stored in them Predicate Abstraction Keeps tracks of certain predicates on data Successfully used in software verification Can handle larger designs
22
Abstraction-Refinement loop Verilog Program Abstract model Model Checker Abstraction refinement Verification Initial Abstraction No error or bug found Simulator Property holds Simulation sucessful Bug found Refinement Spurious counterexample
23
An example module main (clk) input clk; reg [10:0] x, y; initial x= 100, y= 200; always @ (posedge clk) begin x <= y; y <= x; end endmodule Property: AG (x = 100 or x = 200) Verilog program
24
Abstraction-Refinement loop Verilog Program Abstract model Model Checker Abstraction refinement Verification Initial Abstraction No error or bug found Simulator Property holds Simulation sucessful Bug found Refinement Spurious counterexample
25
Predicate Abstraction module main (clk) input clk; reg [10:0] x, y; initial x= 100, y= 200; always @ (posedge clk) begin x <= y; y <= x; end endmodule Property: AG (x = 100 or x = 200) Initial set of predicates: {x = 100, x = 200} Verilog program Word level predicates
26
Computing Most Precise Abstraction + x’ = y y’ = x + Current state Next state Equation passed to the SAT solver Transition Relation Computing abstract transitions
27
Obtain transitions Computing abstract transitions 10 00 01 11 … and so on …
28
Abstract Model module main (clk) input clk; reg [10:0] x, y; initial x= 100, y= 200; always @ (posedge clk) begin x <= y; y <= x; end endmodule Property: AG (x = 100 or x = 200) Initial set of predicates: {x = 100, x = 200} Verilog program Initial state Failure state 10 00 01 11
29
Abstraction-Refinement loop Verilog Program Abstract model Model Checker Abstraction refinement Verification Initial Abstraction No error or bug found Simulator Property holds Simulation sucessful Bug found Refinement Spurious counterexample
30
Model checking module main (clk) input clk; reg [10:0] x, y; initial x= 100, y= 200; always @ (posedge clk) begin x <= y; y <= x; end endmodule Verilog program Failure state 10 00 01 11 Initial state Abstract Model
31
Model checking module main (clk) input clk; reg [10:0] x, y; initial x= 100, y= 200; always @ (posedge clk) begin x <= y; y <= x; end endmodule Verilog program Failure state 10 00 01 11 Initial state Abstract Model Counterexample
32
Abstraction-Refinement loop Verilog Program Abstract model Model Checker Abstraction refinement Verification Initial Abstraction No error or bug found Simulator Property holds Simulation sucessful Bug found Refinement Spurious counterexample
33
u Counterexample in the abstract model s (length = 1) Each state is a valuation of h x = 100, x=200 i Simulation equation Simulation of the counterexample Initial values of the registers predicate values in the first state of the counterexample Transition relation predicate values in the second state of the counterexample equation is unsatisfiable So counterexample is spurious
34
Abstraction-Refinement loop Verilog Program Abstract model Model Checker Abstraction refinement Verification Initial Abstraction No error or bug found Simulator Property holds Simulation sucessful Bug found Refinement Spurious counterexample
35
Refinement u Let length of spurious counterexample be k u Take weakest pre-condition of property for k steps with respect to transition functions u Pick atomic predicates from weakest precondition
36
Refinement (x’ = 100 Ç x’ = 200) Holds after one step x’ = y y’ = x (y = 100 Ç y = 200) weakest precondition x’ = y y’ = x AG (x = 100 Ç x = 200) + Transition functions Property length =1 + spurious counterexample New predicates y = 100, y = 200
37
Abstract again module main (clk) input clk; reg [10:0] x, y; initial x= 100, y= 200; always @ (posedge clk) begin x <= y; y <= x; end endmodule Property: AG (x = 100 or x = 200) Updated set of predicates: {x = 100, x = 200, y=100, y=200} Verilog program 1001 0110 Initial state Model check New abstraction
38
Model checking module main (clk) input clk; reg [10:0] x, y; initial x= 100, y= 200; always @ (posedge clk) begin x <= y; y <= x; end endmodule Property: AG (x = 100 or x = 200) Updated set of predicates: {x = 100, x = 200, y=100, y=200} Verilog program 1001 0110 Initial state Property holds! New abstraction
39
Result module main (clk) input clk; reg [10:0] x, y; initial x= 100, y= 200; always @ (posedge clk) begin x <= y; y <= x; end endmodule Property: AG (x = 100 or x = 200) Verilog program Property holds!
40
Experimental results (VIS benchmarks) Benchmark Lines of code #Latches#Variables Veracity Time #Predicates#Iteration cachecoherence5494317049s259 mpeg decoder 1 121556780029s93 mpeg decoder 2 121556780047s94 SDLX8984181139s4330 Miim84183237 0.57s * 0.57s *42 PI-Bus1020312863 2.42s * 101 * Using lazy abstraction All use predicate partitioning
41
Bigger benchmarks Benchmark#Latches Veracity time Cadence SMV time ICU281.3s0.1s ICRAM2KB16427450.7s25s ICRAM4KB32796843.3sterminates ARITH1002023.5s182.4s ARITH2004029.6s2147s ARITH500100232.2stimeout ARITH10002002122.6stimeout
42
Tools u VCEGAR (Verilog Counterexample Guided Abstraction Refinement) at CMU s www.cs.cmu.edu/~modelcheck/vcegar
43
Questions
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.