Presentation is loading. Please wait.

Presentation is loading. Please wait.

Boolean Algebra Module M4.1 Section 5.1. Boolean Algebra and Logic Equations Switching Algebra Theorems Venn Diagrams.

Similar presentations


Presentation on theme: "Boolean Algebra Module M4.1 Section 5.1. Boolean Algebra and Logic Equations Switching Algebra Theorems Venn Diagrams."— Presentation transcript:

1 Boolean Algebra Module M4.1 Section 5.1

2 Boolean Algebra and Logic Equations Switching Algebra Theorems Venn Diagrams

3 One-variable Theorems OR Version AND Version X # 0 = X X # 1 = 1 X & 1 = X X & 0 = 0 Note:Principle of Duality You can change # to & and 0 to 1 and vice versa

4 One-variable Theorems OR Version AND Version X # !X = 1 X # X = X X & !X = 0 X & X = X Note:Principle of Duality You can change # to & and 0 to 1 and vice versa

5 Two-variable Theorems Commutative Laws Unity Absorption-1 Absorption-2

6 Commutative Laws X # Y = Y # X X & Y = Y & X

7 Venn Diagrams X !X

8 Venn Diagrams XY X & Y

9 Venn Diagrams X # Y XY

10 Venn Diagrams !X & Y X Y

11 Unity !X & Y X Y X & Y (X & Y) # (!X & Y) = Y Dual: (X # Y) & (!X # Y) = Y

12 Absorption-1 X Y X & Y Y # (X & Y) = Y Dual: Y & (X # Y) = Y

13 Absorption-2 !X & Y X Y X # (!X & Y) = X # Y Dual: X & (!X # Y) = X & Y

14 Three-variable Theorems Associative Laws Distributive Laws

15 Associative Laws X # (Y # Z) = (X # Y) # Z Dual: X & (Y & Z) = (X & Y) & Z

16 Associative Law 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 X Y Z Y # Z X # (Y # Z) X # Y (X # Y) # Z X # (Y # Z) = (X # Y) # Z

17 Distributive Laws X & (Y # Z) = (X & Y) # (X & Z) Dual: X # (Y & Z) = (X # Y) & (X # Z)

18 Distributive Law - a

19 Distributive Law - b X & (Y # Z) = (X & Y) # (X & Z)

20 Generalized De Morgan’s Theorem NOT all variables Change & to # and # to & NOT the result -------------------------------------------- F = X & Y # X & Z # Y & Z F = !((!X # !Y) & (!X # !Z) & (!Y # !Z)) F = !(!(X & Y) & !(X & Z) & !(Y & Z))

21

22 NAND Gate

23 X Y X Z Y Z F F = X & Y # X & Z # Y & Z

24 Question The following is a Boolean identity: (true or false) Y # (X & !Y) = X # Y


Download ppt "Boolean Algebra Module M4.1 Section 5.1. Boolean Algebra and Logic Equations Switching Algebra Theorems Venn Diagrams."

Similar presentations


Ads by Google