Download presentation
Presentation is loading. Please wait.
1
Boolean Algebra Module M4.1 Section 5.1
2
Boolean Algebra and Logic Equations Switching Algebra Theorems Venn Diagrams
3
One-variable Theorems OR Version AND Version X # 0 = X X # 1 = 1 X & 1 = X X & 0 = 0 Note:Principle of Duality You can change # to & and 0 to 1 and vice versa
4
One-variable Theorems OR Version AND Version X # !X = 1 X # X = X X & !X = 0 X & X = X Note:Principle of Duality You can change # to & and 0 to 1 and vice versa
5
Two-variable Theorems Commutative Laws Unity Absorption-1 Absorption-2
6
Commutative Laws X # Y = Y # X X & Y = Y & X
7
Venn Diagrams X !X
8
Venn Diagrams XY X & Y
9
Venn Diagrams X # Y XY
10
Venn Diagrams !X & Y X Y
11
Unity !X & Y X Y X & Y (X & Y) # (!X & Y) = Y Dual: (X # Y) & (!X # Y) = Y
12
Absorption-1 X Y X & Y Y # (X & Y) = Y Dual: Y & (X # Y) = Y
13
Absorption-2 !X & Y X Y X # (!X & Y) = X # Y Dual: X & (!X # Y) = X & Y
14
Three-variable Theorems Associative Laws Distributive Laws
15
Associative Laws X # (Y # Z) = (X # Y) # Z Dual: X & (Y & Z) = (X & Y) & Z
16
Associative Law 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 X Y Z Y # Z X # (Y # Z) X # Y (X # Y) # Z X # (Y # Z) = (X # Y) # Z
17
Distributive Laws X & (Y # Z) = (X & Y) # (X & Z) Dual: X # (Y & Z) = (X # Y) & (X # Z)
18
Distributive Law - a
19
Distributive Law - b X & (Y # Z) = (X & Y) # (X & Z)
20
Generalized De Morgan’s Theorem NOT all variables Change & to # and # to & NOT the result -------------------------------------------- F = X & Y # X & Z # Y & Z F = !((!X # !Y) & (!X # !Z) & (!Y # !Z)) F = !(!(X & Y) & !(X & Z) & !(Y & Z))
22
NAND Gate
23
X Y X Z Y Z F F = X & Y # X & Z # Y & Z
24
Question The following is a Boolean identity: (true or false) Y # (X & !Y) = X # Y
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.