Download presentation
Presentation is loading. Please wait.
1
Spatio-temporal Stochastic Simulation of Connectivity Matrices from Lagrangian Ocean Models
2
The Raw Material: Time series of simulated daily Kij Matrices i
3
Approach
7
Logit Transformation
8
Remove Temporal Trend
9
Remove Spatial Trend
10
Residuals
11
h (lag distance, km) h (lag distance, days) VARIOGRAMS ON PRESENCE/ABSENCE OF SETTLEMENT (INDICATOR VARIABLE, 0/1) Along-Rows (t, i, i) (t, i, i+h) correlation of settlement at adjacent destinations from same source Time (t,i,j) (t+h,i,j) correlation of settlement at time t in patch (i,j) with settlement at time t+h in same patch Down-Columns (t, j, j) (t, j+h, j) correlation of settlement from adjacent sources to the same destination
12
γ(h) h (lag distance, km) h (lag distance, days) VARIOGRAMS ON MAGNITUDE OF SETTLEMENT AT NON-ZERO LOCATIONS Along-Rows (t, i, i) (t, i, i+h) correlation of settlement at adjacent destinations from same source Time (t,i,j) (t+h,i,j) correlation of settlement at time t in patch (i,j) with settlement at time t+h in same patch Down-Columns (t, j, j) (t, j+h, j) correlation of settlement from adjacent sources to the same destination
13
SGEMS ….4D simulation…yay
14
Predicting Alongshore Patterns from Coastal Topgraphy
16
‘Coastal Anomaly’ Broitman and Kinlan 2006 MEPS, In press
17
Smoothing Scale=1000 km COASTAL STRUCTURE
18
Smoothing Scale=50 km COASTAL STRUCTURE
20
S.Africa WNA Chile
21
What scale of coastal features matter to the process you’re interested in? Correlation between variable of interest and topographic index at each smoothing scale
22
myt bal cht Smoothing scale (km) for topo index Correlation coefficient
23
myt bal cht alongshore lag (km) (negative lags are poleward) Correlation coefficient
24
myt bal cht The “Topographic Response Function” Correlation coefficient Alongshore Lag (km) – positive lags poleward – sorry! Smoothing scale (km) for topo index
25
-50510 -250 -200 -150 -100 -50 0 50 100 150 200 250 alongshore lag (km) Amplitude ( ) Mytilus spp. 05001000 -0.05 0 0.05 0.1 Filter length (km) PC amplitude PC1 PC2 PC3
26
-50510 -250 -200 -150 -100 -50 0 50 100 150 200 250 alongshore lag (km) Amplitude ( ) Balanus glandula 05001000 -0.05 0 0.05 0.1 Filter length (km) PC amplitude PC1 PC2 PC3
27
-50510 -250 -200 -150 -100 -50 0 50 100 150 200 250 alongshore lag (km) Amplitude ( ) Chthamalus spp. 05001000 -0.05 0 0.05 0.1 Filter length (km) PC amplitude PC1 PC2 PC3
28
Myt (74%)Bal (85%)Cht (69%)
29
45%; ns 87%; *** Balanus predicted from Mytilus Chthamalus predicted from Mytilus
30
Mytilus spp. 10 3 32 34 36 38 40 42 44 46
31
Balanus -126-124-122-120-118-116 32 34 36 38 40 42 44 46 10 -2 10 10 0 1 2 3 32 34 36 38 40 42 44 46
32
Chthamalus -126-124-122-120-118-116 32 34 36 38 40 42 44 46 10 -2 10 10 0 1 2 3 32 34 36 38 40 42 44 46
33
-126-124-122-120-118-116 32 34 36 38 40 42 44 46 10 -2 10 10 0 1 2 3 32 34 36 38 40 42 44 46
34
regressing PeruRecTx and topography Var Explained = 0.687003 Model significance = 0.436829 2.9442 + -0.0014604 * COAST + -0.0024253 * Topo(521,-238) + 0.0067157 * Topo(753,15) + 0.023021 * Topo(58,156) + 0.011621 * Topo(521,-187) + 0.0054632 * Topo(753,-186) + -0.0095863 * Topo(58,103)
35
regressing SemiRecTx and topography Var Explained = 0.795611 Model significance = 0.229436 -0.039258 + 0.00030025 * COAST + 0.024883 * Topo(522,-224) + -0.024115 * Topo(837,-217) + -0.020776 * Topo(62,-233) + -0.015662 * Topo(522,-65) + 0.013502 * Topo(837,-114) + -0.039298 * Topo(62,235)
36
regressing JhelRecTx and topography Var Explained = 0.914106 Model significance = 0.0501796 -0.055945 + 0.00044229 * COAST + 0.0040024 * Topo(519,-237) + -0.0026306 * Topo(253,22) + -0.079962 * Topo(44,102) + -0.0096198 * Topo(519,196) + -0.043207 * Topo(253,-187) + 0.079086 * Topo(44,-175)
37
A Global, Daily, Sub-Kilometer-Scale Index of Wind-Driven Dynamics in Nearshore Ecosystems
38
JPL Model Nowcast – 1km wind field
40
Kelp Dynamics at the California Channel Islands Responses to Ocean Climate, Trophic Structure, and Management
43
Overall Protection of Kelp Habitats Based on 1989-2003 Kelp MapBased on 2004-2005 Kelp Map Area of Kelp in MPA’s in 2004-2005 versus 1989-2003 Baseline 0 0.05 0.1 Fraction of Kelp Habitat in MPAs 11.0% 5.56 km 2 of 50.50 km 2 13.6% 5.56 km 2 of 40.92 km 2 11.8% 4.82 km 2 of 40.92 km 2
44
Kelp Canopy at San Miguel Island
45
Kelp Canopy at Santa Rosa Island
46
Kelp Canopy at Santa Cruz Island
47
Kelp Canopy at Anacapa Island
48
Kelp Canopy at Santa Barbara Island
49
For Comparison: San Nicolas Island
50
For Comparison: Campus Point (Mainland)
51
Before (1989-2002)Before (1999-2002)After (2003-2006) 0 200 400 600 800 1000 1200 Average Kelp Canopy Biomass (US tons) Change in Canopy Area Over Time: All So Cal Islands
52
Change in Canopy Area Over Time: CINMS vs. Other Islands Before (1989-2002)Before (1999-2002)After (2003-2006) 0 200 400 600 800 1000 1200 Average Kelp Canopy Biomass (US tons) Before (1989-2002)Before (1999-2002)After (2003-2006) 0 200 400 600 800 1000 1200 CINMSSan Nicolas, Clemente, Catalina
53
Kelp Biomass at Islands
55
1989199019911992199319941995199619971998199920002001200220032004200520062007 0 200 400 600 800 1000 1200 1400 1600 1800 Date of Survey Kelp Canopy Biomass (US Tons) Kelp Biomass – CINMS Region
56
CINMS Region Other Islands
57
Patterns Different from Mainland ENSO Index -(SOI) Islands Mainland
58
CINMS Region MBNMS Region (1985-2001) Figure 4
59
Kelp forest state De-forested state From Behrens and Lafferty 2004; based on 1985-2001 data from Kelp Forest Monitoring Project Indirect Effects of Fishing on Kelp Forests?
60
Interesting Pattern at Anacapa Island MCA established
61
F^3 Needs?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.