Presentation is loading. Please wait.

Presentation is loading. Please wait.

The TAU Performance System Sameer Shende, Allen D. Malony, Robert Bell University of Oregon.

Similar presentations


Presentation on theme: "The TAU Performance System Sameer Shende, Allen D. Malony, Robert Bell University of Oregon."— Presentation transcript:

1 The TAU Performance System Sameer Shende, Allen D. Malony, Robert Bell University of Oregon

2 The TAU Performance SystemNRL Monterey, CA Dec. 20032 Outline  Motivation  Part I: What is TAU?  Performance Analysis and Visualization with TAU  Pprof  Paraprof  Paravis  Performance Database  Part II: Using TAU – a tutorial  Part III: A Case Study – Uintah [U. Utah] (if time permits)  Conclusion

3 The TAU Performance SystemNRL Monterey, CA Dec. 20033 Research Motivation  Tools for performance problem solving  Empirical-based performance optimization process  Performance technology concerns characterization Performance Tuning Performance Diagnosis Performance Experimentation Performance Observation hypotheses properties Instrumentation Measurement Analysis Visualization Performance Technology Experiment management Performance database Performance Technology

4 The TAU Performance SystemNRL Monterey, CA Dec. 20034 TAU Performance System  Tuning and Analysis Utilities (11+ year project effort)  Performance system framework for scalable parallel and distributed high-performance computing  Targets a general complex system computation model  nodes / contexts / threads  Multi-level: system / software / parallelism  Measurement and analysis abstraction  Integrated toolkit for performance instrumentation, measurement, analysis, and visualization  Portable performance profiling and tracing facility  Open software approach with technology integration  University of Oregon, Forschungszentrum Jülich, LANL

5 The TAU Performance SystemNRL Monterey, CA Dec. 20035 TAU Performance Systems Goals  Multi-level performance instrumentation  Multi-language automatic source instrumentation  Flexible and configurable performance measurement  Widely-ported parallel performance profiling system  Computer system architectures and operating systems  Different programming languages and compilers  Support for multiple parallel programming paradigms  Multi-threading, message passing, mixed-mode, hybrid  Support for performance mapping  Support for object-oriented and generic programming  Integration in complex software systems and applications

6 The TAU Performance SystemNRL Monterey, CA Dec. 20036 Definitions – Profiling  Profiling  Recording of summary information during execution  inclusive, exclusive time, # calls, hardware statistics, …  Reflects performance behavior of program entities  functions, loops, basic blocks  user-defined “semantic” entities  Very good for low-cost performance assessment  Helps to expose performance bottlenecks and hotspots  Implemented through  sampling: periodic OS interrupts or hardware counter traps  instrumentation: direct insertion of measurement code

7 The TAU Performance SystemNRL Monterey, CA Dec. 20037 Definitions – Tracing  Tracing  Recording of information about significant points (events) during program execution  entering/exiting code region (function, loop, block, …)  thread/process interactions (e.g., send/receive message)  Save information in event record  timestamp  CPU identifier, thread identifier  Event type and event-specific information  Event trace is a time-sequenced stream of event records  Can be used to reconstruct dynamic program behavior  Typically requires code instrumentation

8 The TAU Performance SystemNRL Monterey, CA Dec. 20038 Event Tracing: Instrumentation, Monitor, Trace 1master 2slave 3... void slave { trace(ENTER, 2);... recv(A, tag, buf); trace(RECV, A);... trace(EXIT, 2); } void master { trace(ENTER, 1);... trace(SEND, B); send(B, tag, buf);... trace(EXIT, 1); } MONITOR 58AENTER1 60BENTER2 62ASENDB 64AEXIT1 68BRECVA... 69BEXIT2... CPU A: CPU B: Event definition timestamp

9 The TAU Performance SystemNRL Monterey, CA Dec. 20039 Event Tracing: “Timeline” Visualization 1master 2slave 3... 58AENTER1 60BENTER2 62ASENDB 64AEXIT1 68BRECVA... 69BEXIT2... main master slave 58606264666870 B A

10 The TAU Performance SystemNRL Monterey, CA Dec. 200310 General Complex System Computation Model  Node: physically distinct shared memory machine  Message passing node interconnection network  Context: distinct virtual memory space within node  Thread: execution threads (user/system) in context memory Node VM space Context SMP Threads node memory … … Interconnection Network Inter-node message communication * * physical view model view

11 The TAU Performance SystemNRL Monterey, CA Dec. 200311 TAU Performance System Architecture EPILOG Paraver

12 The TAU Performance SystemNRL Monterey, CA Dec. 200312 Strategies for Empirical Performance Evaluation  Empirical performance evaluation as a series of performance experiments  Experiment trials describing instrumentation and measurement requirements  Where/When/How axes of empirical performance space  where are performance measurements made in program routines, loops, statements…  when is performance instrumentation done compile-time, while pre-processing, runtime…  how are performance measurement/instrumentation chosen profiling with hw counters, tracing, callpath profiling…

13 The TAU Performance SystemNRL Monterey, CA Dec. 200313 TAU Instrumentation Approach  Support for standard program events  Routines  Classes and templates  Statement-level blocks  Support for user-defined events  Begin/End events (“user-defined timers”)  Atomic events  Selection of event statistics  Support definition of “semantic” entities for mapping  Support for event groups  Instrumentation optimization

14 The TAU Performance SystemNRL Monterey, CA Dec. 200314 TAU Instrumentation  Flexible instrumentation mechanisms at multiple levels  Source code  manual  automatic C, C++, F77/90/95 (Program Database Toolkit (PDT)) OpenMP (directive rewriting (Opari), POMP spec)  Object code  pre-instrumented libraries (e.g., MPI using PMPI)  statically-linked and dynamically-linked  Executable code  dynamic instrumentation (pre-execution) (DynInstAPI)  virtual machine instrumentation (e.g., Java using JVMPI)

15 The TAU Performance SystemNRL Monterey, CA Dec. 200315 Multi-Level Instrumentation  Targets common measurement interface  TAU API  Multiple instrumentation interfaces  Simultaneously active  Information sharing between interfaces  Utilizes instrumentation knowledge between levels  Selective instrumentation  Available at each level  Cross-level selection  Targets a common performance model  Presents a unified view of execution  Consistent performance events

16 The TAU Performance SystemNRL Monterey, CA Dec. 200316 Program Database Toolkit (PDT)  Program code analysis framework  develop source-based tools  High-level interface to source code information  Integrated toolkit for source code parsing, database creation, and database query  Commercial grade front-end parsers  Portable IL analyzer, database format, and access API  Open software approach for tool development  Multiple source languages  Implement automatic performance instrumentation tools  tau_instrumentor

17 The TAU Performance SystemNRL Monterey, CA Dec. 200317 Program Database Toolkit (PDT) Application / Library C / C++ parser Fortran parser F77/90/95 C / C++ IL analyzer Fortran IL analyzer Program Database Files IL DUCTAPE PDBhtml SILOON CHASM TAU_instr Program documentation Application component glue C++ / F90/95 interoperability Automatic source instrumentation

18 The TAU Performance SystemNRL Monterey, CA Dec. 200318 PDT 3.0 Functionality  C++ statement-level information implementation  for, while loops, declarations, initialization, assignment…  PDB records defined for most constructs  DUCTAPE  Processes PDB 1.x, 2.x, 3.x uniformly  PDT applications  XMLgen  PDB to XML converter  Used for CHASM and CCA tools  PDBstmt  Statement callgraph display tool

19 The TAU Performance SystemNRL Monterey, CA Dec. 200319 PDT 3.0 Functionality (continued)  Cleanscape Flint parser fully integrated for F90/95  Flint parser is very robust  Produces PDB records for TAU instrumentation (stage 1)  Linux (x86, IA-64, Opteron, Power4), HP Tru64, IBM AIX, Cray X1,T3E, Solaris, SGI, Apple, Windows  Full PDB 2.0 specification (stage 2) [Q1 ‘04]  Statement level support (stage 3) [Q3 ‘04]  PDT 3.0 released at SC2003  URL: http://www.cs.uoregon.edu/research/paracomp/pdtoolkit

20 The TAU Performance SystemNRL Monterey, CA Dec. 200320 TAU Performance Measurement  TAU supports profiling and tracing measurement  Robust timing and hardware performance support using PAPI  Support for online performance monitoring  Profile and trace performance data export to file system  Selective exporting  Extension of TAU measurement for multiple counters  Creation of user-defined TAU counters  Access to system-level metrics  Support for callpath measurement  Integration with system-level performance data  Linux MAGNET/MUSE (Wu Feng, LANL)

21 The TAU Performance SystemNRL Monterey, CA Dec. 200321 TAU Measurement with Multiple Counters  Extend event measurement to capture multiple metrics  Begin/end (interval) events  User-defined (atomic) events  Multiple performance data sources can be queried  Associate counter function list to event  Defined statically or dynamically  Different counter sources  Timers and hardware counters  User-defined counters (application specified)  System-level counters  Monotonically increasing required for begin/end events  Extend user-defined counters to system-level counter

22 The TAU Performance SystemNRL Monterey, CA Dec. 200322 TAU Measurement  Performance information  Performance events  High-resolution timer library (real-time / virtual clocks)  General software counter library (user-defined events)  Hardware performance counters  PAPI (Performance API) (UTK, Ptools Consortium)  consistent, portable API  Organization  Node, context, thread levels  Profile groups for collective events (runtime selective)  Performance data mapping between software levels

23 The TAU Performance SystemNRL Monterey, CA Dec. 200323 TAU Measurement Options  Parallel profiling  Function-level, block-level, statement-level  Supports user-defined events  TAU parallel profile data stored during execution  Hardware counts values  Support for multiple counters  Support for callgraph and callpath profiling  Tracing  All profile-level events  Inter-process communication events  Trace merging and format conversion

24 The TAU Performance SystemNRL Monterey, CA Dec. 200324 Grouping Performance Data in TAU  Profile Groups  A group of related routines forms a profile group  Statically defined  TAU_DEFAULT, TAU_USER[1-5], TAU_MESSAGE, TAU_IO, …  Dynamically defined  group name based on string, such as “adlib” or “particles”  runtime lookup in a map to get unique group identifier  uses tau_instrumentor to instrument  Ability to change group names at runtime  Group-based instrumentation and measurement control

25 The TAU Performance SystemNRL Monterey, CA Dec. 200325 TAU Analysis  Parallel profile analysis  Pprof  parallel profiler with text-based display  ParaProf  Graphical, scalable, parallel profile analysis and display  Trace analysis and visualization  Trace merging and clock adjustment (if necessary)  Trace format conversion (ALOG, SDDF, VTF, Paraver)  Trace visualization using Vampir (Pallas/Intel)

26 The TAU Performance SystemNRL Monterey, CA Dec. 200326 Pprof Output (NAS Parallel Benchmark – LU)  Intel Quad PIII Xeon  F90 + MPICH  Profile - Node - Context - Thread  Events - code - MPI

27 The TAU Performance SystemNRL Monterey, CA Dec. 200327 Terminology – Example  For routine “int main( )”:  Exclusive time  100-20-50-20=10 secs  Inclusive time  100 secs  Calls  1 call  Subrs (no. of child routines called)  3  Inclusive time/call  100secs int main( ) { /* takes 100 secs */ f1(); /* takes 20 secs */ f2(); /* takes 50 secs */ f1(); /* takes 20 secs */ /* other work */ } /* Time can be replaced by counts */

28 The TAU Performance SystemNRL Monterey, CA Dec. 200328 ParaProf (NAS Parallel Benchmark – LU) node,context, threadGlobal profiles Routine profile across all nodes Event legend Individual profile

29 The TAU Performance SystemNRL Monterey, CA Dec. 200329 TAU + Vampir (NAS Parallel Benchmark – LU) Timeline display Callgraph display Parallelism display Communications display

30 The TAU Performance SystemNRL Monterey, CA Dec. 200330 PETSc ex19 (Tracing) Commonly seen communicaton behavior

31 The TAU Performance SystemNRL Monterey, CA Dec. 200331 TAU’s EVH1 Execution Trace in Vampir MPI_Alltoall is an execution bottleneck

32 The TAU Performance SystemNRL Monterey, CA Dec. 200332 TAU Performance System Status  Computing platforms (selected)  IBM SP / pSeries, SGI Origin 2K/3K, Cray T3E / SV-1 / X1, HP (Compaq) SC (Tru64), Sun, Hitachi SR8000, NEC SX-5/6, Linux clusters (IA-32/64, Alpha, PPC, PA- RISC, Power, Opteron), Apple (G4/5, OS X), Windows  Programming languages  C, C++, Fortran 77/90/95, HPF, Java, OpenMP, Python  Thread libraries  pthreads, SGI sproc, Java,Windows, OpenMP  Compilers (selected)  Intel KAI (KCC, KAP/Pro), PGI, GNU, Fujitsu, Sun, Microsoft, SGI, Cray, IBM (xlc, xlf), Compaq, NEC, Intel

33 The TAU Performance SystemNRL Monterey, CA Dec. 200333 Performance Analysis and Visualization  Analysis of parallel profile and trace measurement  Parallel profile analysis  ParaProf  ParaVis  Profile generation from trace data  Performance database framework (PerfDBF)  Parallel trace analysis  Translation to VTF 3.0 and EPILOG  Integration with VNG (Technical University of Dresden)  Online parallel analysis and visualization

34 The TAU Performance SystemNRL Monterey, CA Dec. 200334 ParaProf Framework Architecture  Portable, extensible, and scalable tool for profile analysis  Try to offer “best of breed” capabilities to analysts  Build as profile analysis framework for extensibility

35 The TAU Performance SystemNRL Monterey, CA Dec. 200335 Profile Manager Window  Structured AMR toolkit (SAMRAI++), LLNL

36 The TAU Performance SystemNRL Monterey, CA Dec. 200336 Full Profile Window (Exclusive Time) 512 processes

37 The TAU Performance SystemNRL Monterey, CA Dec. 200337 Node / Context / Thread Profile Window

38 The TAU Performance SystemNRL Monterey, CA Dec. 200338 Derived Metrics

39 The TAU Performance SystemNRL Monterey, CA Dec. 200339 Full Profile Window (Metric-specific) 512 processes

40 The TAU Performance SystemNRL Monterey, CA Dec. 200340 ParaProf Enhancements  Readers completely separated from the GUI  Access to performance profile database  Profile translators  mpiP, papiprof, dynaprof  Callgraph display  prof/gprof style with hyperlinks  Integration of 3D performance plotting library  Scalable profile analysis  Statistical histograms, cluster analysis, …  Generalized programmable analysis engine  Cross-experiment analysis

41 The TAU Performance SystemNRL Monterey, CA Dec. 200341 ParaVis Performance Visualizer Performance Analyzer Performance Data Reader  Scalable parallel profile analysis  Scalable performance displays  3D graphics  Analysis across profile samples  Allow for runtime use  Animated / interactive visualization  Initially develop with SCIRun  Computational environment  Performance graphics toolkit  Portable plotting library  OpenGL

42 The TAU Performance SystemNRL Monterey, CA Dec. 200342 Performance Visualization in SCIRun SCIRun program EVH1, IBM EVH1, Linux IA-32

43 The TAU Performance SystemNRL Monterey, CA Dec. 200343 “Terrain” Visualization (Full profile) F Uintah

44 The TAU Performance SystemNRL Monterey, CA Dec. 200344 “Scatterplot” Visualization  Each point coordinate determined by three values: MPI_Reduce MPI_Recv MPI_Waitsome  Min/Max value range  Effective for cluster analysis Uintah

45 The TAU Performance SystemNRL Monterey, CA Dec. 200345 Empirical-Based Performance Optimization characterization Performance Tuning Performance Diagnosis Performance Experimentation Performance Observation hypotheses properties observability requirements ? Process Experiment Schemas Experiment Trials Experiment management

46 The TAU Performance SystemNRL Monterey, CA Dec. 200346 TAU Performance Database Framework Performance analysis programs Performance analysis and query toolkit  profile data only  XML representation  project / experiment / trial PerfDML translators... ORDB PostgreSQL PerfDB Performance data description Raw performance data Other tools

47 The TAU Performance SystemNRL Monterey, CA Dec. 200347 PerfDBF Components  Performance Data Meta Language (PerfDML)  Common performance data representation  Performance meta-data description  PerfDML translators to common data representation  Performance DataBase (PerfDB)  Standard database technology (SQL)  Free, robust database software (PostgresSQL, MySQL)  Commonly available APIs  Performance DataBase Toolkit (PerfDBT)  Commonly used modules for query and analysis  PerfDB API to facilitate analysis tool development

48 The TAU Performance SystemNRL Monterey, CA Dec. 200348 PerfDBF Browser

49 The TAU Performance SystemNRL Monterey, CA Dec. 200349 PerfDBF Cross-Trial Analysis

50 The TAU Performance SystemNRL Monterey, CA Dec. 200350 TAU Performance System Status  Computing platforms  IBM SP, SGI Origin 2K/3K, ASCI Red, Apple, Cray X1, SV1, T3E, HP/Compaq SC, HP Superdome, Sun, Windows, Linux (IA-32, Opteron, IA-64, Alpha…), NEC, Hitachi, …  Programming languages  C, C++, Fortran 77/90, HPF, Java, Python  Thread libraries  pthreads, Java,Windows, Tulip, SMARTS, OpenMP  Compilers  Cray, KAI, PGI, GNU, Fujitsu, Sun, Microsoft, SGI, Cray, IBM, HP-Compaq, NEC, Hitachi, HP, Absoft, NAGWare, Intel…  Version 2.13 available from:  http://www.cs.uoregon.edu/research/paracomp/tau

51 The TAU Performance SystemNRL Monterey, CA Dec. 200351 Using TAU – A tutorial  Configuration  Instrumentation  Manual  PDT- Source rewriting for C,C++, F77/90/95  MPI – Wrapper interposition library  OpenMP – Directive rewriting  Binary Instrumentation  DyninstAPI – Runtime/Rewriting binary  Java – Runtime instrumentation  Python – Runtime instrumentation  Measurement  Performance Analysis

52 The TAU Performance SystemNRL Monterey, CA Dec. 200352 TAU Performance System Architecture EPILOG Paraver

53 The TAU Performance SystemNRL Monterey, CA Dec. 200353 Using TAU  Install TAU % configure ; make clean install  Instrument application  TAU Profiling API  Typically modify application makefile  include TAU’s stub makefile, modify variables  Set environment variables  directory where profiles/traces are to be stored  Execute application % mpirun –np a.out;  Analyze performance data  paraprof, vampir, pprof, paraver …

54 The TAU Performance SystemNRL Monterey, CA Dec. 200354 Description of Optional Packages  PAPI – Measures hardware performance data e.g., floating point instructions, L1 data cache misses etc.  DyninstAPI – Helps instrument an application binary at runtime or rewrites the binary  EPILOG – Trace library. Epilog traces can be analyzed by EXPERT [FZJ], an automated bottleneck detection tool.  Opari – Tool that instruments OpenMP programs  Vampir – Commercial trace visualization tool [Pallas]  Paraver – Trace visualization tool [CEPBA]

55 The TAU Performance SystemNRL Monterey, CA Dec. 200355 TAU Measurement System Configuration  configure [OPTIONS]  {-c++=, -cc= } Specify C++ and C compilers  {-pthread, -sproc}Use pthread or SGI sproc threads  -openmpUse OpenMP threads  -jdk= Specify Java instrumentation (JDK)  -opari= Specify location of Opari OpenMP tool  -papi= Specify location of PAPI  -pdt= Specify location of PDT  -dyninst= Specify location of DynInst Package  -mpi[inc/lib]= Specify MPI library instrumentation  -python[inc/lib]= Specify Python instrumentation  -epilog= Specify location of EPILOG

56 The TAU Performance SystemNRL Monterey, CA Dec. 200356 TAU Measurement System Configuration  configure [OPTIONS]  -TRACEGenerate binary TAU traces  -PROFILE (default) Generate profiles (summary)  -PROFILECALLPATHGenerate call path profiles  -PROFILESTATSGenerate std. dev. statistics  -MULTIPLECOUNTERSUse hardware counters + time  -CPUTIMEUse usertime+system time  -PAPIWALLCLOCKUse PAPI’s wallclock time  -PAPIVIRTUALUse PAPI’s process virtual time  -SGITIMERSUse fast IRIX timers  -LINUXTIMERSUse fast x86 Linux timers

57 The TAU Performance SystemNRL Monterey, CA Dec. 200357 TAU Measurement Configuration – Examples ./configure -c++=xlC_r –pthread  Use TAU with xlC_r and pthread library under AIX  Enable TAU profiling (default) ./configure -TRACE –PROFILE  Enable both TAU profiling and tracing ./configure -c++=xlC_r -cc=xlc_r -papi=/usr/local/packages/papi -pdt=/usr/local/pdtoolkit-3.0 –arch=ibm64 -mpiinc=/usr/lpp/ppe.poe/include -mpilib=/usr/lpp/ppe.poe/lib -MULTIPLECOUNTERS  Use IBM’s xlC_r and xlc_r compilers with PAPI, PDT, MPI packages and multiple counters for measurements  Typically configure multiple measurement libraries

58 The TAU Performance SystemNRL Monterey, CA Dec. 200358 TAU Manual Instrumentation API for C/C++  Initialization and runtime configuration  TAU_PROFILE_INIT(argc, argv); TAU_PROFILE_SET_NODE(myNode); TAU_PROFILE_SET_CONTEXT(myContext); TAU_PROFILE_EXIT(message); TAU_REGISTER_THREAD();  Function and class methods  TAU_PROFILE(name, type, group);  Template  TAU_TYPE_STRING(variable, type); TAU_PROFILE(name, type, group); CT(variable);  User-defined timing  TAU_PROFILE_TIMER(timer, name, type, group); TAU_PROFILE_START(timer); TAU_PROFILE_STOP(timer);

59 The TAU Performance SystemNRL Monterey, CA Dec. 200359 TAU Measurement API (continued)  User-defined events  TAU_REGISTER_EVENT(variable, event_name); TAU_EVENT(variable, value); TAU_PROFILE_STMT(statement);  Mapping  TAU_MAPPING(statement, key); TAU_MAPPING_OBJECT(funcIdVar); TAU_MAPPING_LINK(funcIdVar, key);  TAU_MAPPING_PROFILE (funcIdVar); TAU_MAPPING_PROFILE_TIMER(timer, funcIdVar); TAU_MAPPING_PROFILE_START(timer); TAU_MAPPING_PROFILE_STOP(timer);  Reporting  TAU_REPORT_STATISTICS(); TAU_REPORT_THREAD_STATISTICS();

60 The TAU Performance SystemNRL Monterey, CA Dec. 200360 Manual Instrumentation – C++ Example #include int main(int argc, char **argv) { TAU_PROFILE(“int main(int, char **)”, “ ”, TAU_DEFAULT); TAU_PROFILE_INIT(argc, argv); TAU_PROFILE_SET_NODE(0); /* for sequential programs */ foo(); return 0; } int foo(void) { TAU_PROFILE(“int foo(void)”, “ ”, TAU_DEFAULT); // measures entire foo() TAU_PROFILE_TIMER(t, “foo(): for loop”, “[23:45 file.cpp]”, TAU_USER); TAU_PROFILE_START(t); for(int i = 0; i < N ; i++){ work(i); } TAU_PROFILE_STOP(t); // other statements in foo … }

61 The TAU Performance SystemNRL Monterey, CA Dec. 200361 Manual Instrumentation – C Example #include int main(int argc, char **argv) { TAU_PROFILE_TIMER(tmain, “int main(int, char **)”, “ ”, TAU_DEFAULT); TAU_PROFILE_INIT(argc, argv); TAU_PROFILE_SET_NODE(0); /* for sequential programs */ TAU_PROFILE_START(tmain); foo(); … TAU_PROFILE_STOP(tmain); return 0; } int foo(void) { TAU_PROFILE_TIMER(t, “foo()”, “ ”, TAU_USER); TAU_PROFILE_START(t); for(int i = 0; i < N ; i++){ work(i); } TAU_PROFILE_STOP(t); }

62 The TAU Performance SystemNRL Monterey, CA Dec. 200362 Manual Instrumentation – F90 Example cc34567 Cubes program – comment line PROGRAM SUM_OF_CUBES integer profiler(2) save profiler INTEGER :: H, T, U call TAU_PROFILE_INIT() call TAU_PROFILE_TIMER(profiler, 'PROGRAM SUM_OF_CUBES') call TAU_PROFILE_START(profiler) call TAU_PROFILE_SET_NODE(0) ! This program prints all 3-digit numbers that ! equal the sum of the cubes of their digits. DO H = 1, 9 DO T = 0, 9 DO U = 0, 9 IF (100*H + 10*T + U == H**3 + T**3 + U**3) THEN PRINT "(3I1)", H, T, U ENDIF END DO call TAU_PROFILE_STOP(profiler) END PROGRAM SUM_OF_CUBES

63 The TAU Performance SystemNRL Monterey, CA Dec. 200363 Instrumenting Multithreaded Applications #include void * threaded_function(void *data) { TAU_REGISTER_THREAD(); // Before any other TAU calls TAU_PROFILE(“void * threaded_function”, “ ”, TAU_DEFAULT); work(); } int main(int argc, char **argv) { TAU_PROFILE(“int main(int, char **)”, “ ”, TAU_DEFAULT); TAU_PROFILE_INIT(argc, argv); TAU_PROFILE_SET_NODE(0); /* for sequential programs */ pthread_attr_t attr; pthread_t tid; pthread_attr_init(&attr); pthread_create(&tid, NULL, threaded_function, NULL); return 0; }

64 The TAU Performance SystemNRL Monterey, CA Dec. 200364 Compiling % configure [options] % make clean install Creates /lib/Makefile.tau stub Makefile and /lib/libTau.a [.so] libraries which defines a single configuration of TAU

65 The TAU Performance SystemNRL Monterey, CA Dec. 200365 Compiling: TAU Makefiles  Include TAU Stub Makefile ( /lib) in the user’s Makefile.  Variables:  TAU_CXXSpecify the C++ compiler used by TAU  TAU_CC, TAU_F90Specify the C, F90 compilers  TAU_DEFSDefines used by TAU. Add to CFLAGS  TAU_LDFLAGSLinker options. Add to LDFLAGS  TAU_INCLUDEHeader files include path. Add to CFLAGS  TAU_LIBSStatically linked TAU library. Add to LIBS  TAU_SHLIBSDynamically linked TAU library  TAU_MPI_LIBSTAU’s MPI wrapper library for C/C++  TAU_MPI_FLIBSTAU’s MPI wrapper library for F90  TAU_FORTRANLIBSMust be linked in with C++ linker for F90  TAU_CXXLIBSMust be linked in with F90 linker  TAU_DISABLETAU’s dummy F90 stub library  Note: Not including TAU_DEFS in CFLAGS disables instrumentation in C/C++ programs (TAU_DISABLE for f90).

66 The TAU Performance SystemNRL Monterey, CA Dec. 200366 Including TAU Makefile - Example include /usr/tau/sgi64/lib/Makefile.tau-pthread-kcc CXX = $(TAU_CXX) CC = $(TAU_CC) CFLAGS = $(TAU_DEFS) $(TAU_INCLUDE) LIBS = $(TAU_LIBS) OBJS =... TARGET= a.out TARGET: $(OBJS) $(CXX) $(LDFLAGS) $(OBJS) -o $@ $(LIBS).cpp.o: $(CC) $(CFLAGS) -c $< -o $@

67 The TAU Performance SystemNRL Monterey, CA Dec. 200367 Setup: Running Applications % set path=($path / /bin) % setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH\: / /lib For PAPI (1 counter): % setenv PAPI_EVENT PAPI_FP_INS For PAPI (multiplecounters): % setenv COUNTER1 PAPI_FP_INS (PAPI’s Floating point ins) % setenv COUNTER2 PAPI_L1_DCM (PAPI’s L1 Data cache misses) % setenv COUNTER3 P_VIRTUAL_TIME (PAPI’s virtual time) % setenv COUNTER4 LINUX_TIMERS (Wallclock time) % mpirun –np % llsubmit job.sh % paraprof (for performance analysis)

68 The TAU Performance SystemNRL Monterey, CA Dec. 200368 Using TAU – A tutorial  Configuration  Instrumentation  Manual  PDT- Source rewriting for C,C++, F77/90/95  MPI – Wrapper interposition library  OpenMP – Directive rewriting  Binary Instrumentation  DyninstAPI – Runtime/Rewriting binary  Java – Runtime instrumentation  Python – Runtime instrumentation  Measurement  Performance Analysis

69 The TAU Performance SystemNRL Monterey, CA Dec. 200369 Using Program Database Toolkit (PDT) Step I: Configure PDT: % configure –arch=IRIX64 –CC % make clean; make install Builds / /bin/cxxparse, cparse, f90parse and f95parse Builds / /lib/libpdb.a. See /README file. Step II: Configure TAU with PDT for auto-instrumentation of source code: % configure –arch=sgi64 –c++=CC –cc=cc –pdt=/usr/contrib/TAU/pdtoolkit-3.0 % make clean; make install Builds / /bin/tau_instrumentor, / /lib/Makefile.tau and libTau.a See /INSTALL file.

70 The TAU Performance SystemNRL Monterey, CA Dec. 200370 TAU Makefile for PDT include /usr/tau/include/Makefile CXX = $(TAU_CXX) CC = $(TAU_CC) PDTPARSE = $(PDTDIR)/$(CONFIG_ARCH)/bin/cxxparse TAUINSTR = $(TAUROOT)/$(CONFIG_ARCH)/bin/tau_instrumentor CFLAGS = $(TAU_DEFS) $(TAU_INCLUDE) LIBS = $(TAU_LIBS) OBJS =... TARGET= a.out TARGET: $(OBJS) $(CXX) $(LDFLAGS) $(OBJS) -o $@ $(LIBS).cpp.o: $(PDTPARSE) $< $(TAUINSTR) $*.pdb $< -o $*.inst.cpp –f select.dat $(CC) $(CFLAGS) -c $*.inst.cpp -o $@

71 The TAU Performance SystemNRL Monterey, CA Dec. 200371 Instrumentation Control  Selection of which performance events to observe  Could depend on scope, type, level of interest  Could depend on instrumentation overhead  How is selection supported in instrumentation system?  No choice  Include / exclude routine and file lists (TAU)  Environment variables  Static vs. dynamic  Problem: Controlling instrumentation of small routines  High relative measurement overhead  Significant intrusion and possible perturbation

72 The TAU Performance SystemNRL Monterey, CA Dec. 200372 Using PDT: tau_instrumentor % tau_instrumentor Usage : tau_instrumentor [-o ] [-noinline] [-g groupname] [-i headerfile] [-c|-c++|-fortran] [-f ] For selective instrumentation, use –f option % tau_instrumentor foo.pdb foo.cpp –o foo.inst.cpp –f selective.dat % cat selective.dat # Selective instrumentation: Specify an exclude/include list of routines/files. BEGIN_EXCLUDE_LIST void quicksort(int *, int, int) void sort_5elements(int *) void interchange(int *, int *) END_EXCLUDE_LIST BEGIN_FILE_INCLUDE_LIST Main.cpp Foo?.c *.C END_FILE_INCLUDE_LIST # Instruments routines in Main.cpp, Foo?.c and *.C files only # Use BEGIN_[FILE]_INCLUDE_LIST with END_[FILE]_INCLUDE_LIST

73 The TAU Performance SystemNRL Monterey, CA Dec. 200373 tau_reduce: Rule-Based Overhead Analysis  Analyze the performance data to determine events with high (relative) overhead performance measurements  Create a select list for excluding those events  Rule grammar (used in tau_reduce tool) [GroupName:] Field Operator Number  GroupName indicates rule applies to events in group  Field is a event metric attribute (from profile statistics)  numcalls, numsubs, percent, usec, cumusec, count [PAPI], totalcount, stdev, usecs/call, counts/call  Operator is one of >, <, or =  Number is any number  Compound rules possible using & between simple rules

74 The TAU Performance SystemNRL Monterey, CA Dec. 200374 Example Rules  #Exclude all events that are members of TAU_USER #and use less than 1000 microseconds TAU_USER:usec < 1000  #Exclude all events that have less than 100 #microseconds and are called only once usec < 1000 & numcalls = 1  #Exclude all events that have less than 1000 usecs per #call OR have a (total inclusive) percent less than 5 usecs/call < 1000 percent < 5  Scientific notation can be used  usec>1000 & numcalls>400000 & usecs/call 25

75 The TAU Performance SystemNRL Monterey, CA Dec. 200375 TAU_REDUCE  Reads profile files and rules  Creates selective instrumentation file  Specifies which routines should be excluded from instrumentation tau_reduce rules profile Selective instrumentation file

76 The TAU Performance SystemNRL Monterey, CA Dec. 200376 Using TAU – A tutorial  Configuration  Instrumentation  Manual  PDT- Source rewriting for C,C++, F77/90/95  MPI – Wrapper interposition library  OpenMP – Directive rewriting  Binary Instrumentation  DyninstAPI – Runtime/Rewriting binary  Java – Runtime instrumentation  Python – Runtime instrumentation  Measurement  Performance Analysis

77 The TAU Performance SystemNRL Monterey, CA Dec. 200377 Using MPI Wrapper Interposition Library Step I: Configure TAU with MPI: % configure –mpiinc=/usr/include –mpilib=/usr/lib64 –arch=sgi64 –c++=CC –cc=cc –pdt=/usr/contrib/TAU/pdtoolkit-3.0 % make clean; make install Builds / /lib/libTauMpi, / /lib/Makefile.tau and libTau.a

78 The TAU Performance SystemNRL Monterey, CA Dec. 200378 TAU’s MPI Wrapper Interposition Library  Uses standard MPI Profiling Interface  Provides name shifted interface  MPI_Send = PMPI_Send  Weak bindings  Interpose TAU’s MPI wrapper library between MPI and TAU  -lmpi replaced by –lTauMpi –lpmpi –lmpi

79 The TAU Performance SystemNRL Monterey, CA Dec. 200379 MPI Library Instrumentation (MPI_Send) int MPI_Send(…) /* TAU redefines MPI_Send */... { int returnVal, typesize; TAU_PROFILE_TIMER(tautimer, "MPI_Send()", " ", TAU_MESSAGE); TAU_PROFILE_START(tautimer); if (dest != MPI_PROC_NULL) { PMPI_Type_size(datatype, &typesize); TAU_TRACE_SENDMSG(tag, dest, typesize*count); } /* Wrapper calls PMPI_Send */ returnVal = PMPI_Send(buf, count, datatype, dest, tag, comm); TAU_PROFILE_STOP(tautimer); return returnVal; }

80 The TAU Performance SystemNRL Monterey, CA Dec. 200380 Including TAU’s stub Makefile include /usr/tau/sgi64/lib/Makefile.tau-mpi CXX = $(TAU_CXX) CC = $(TAU_CC) CFLAGS = $(TAU_DEFS) $(TAU_INCLUDE) $(TAU_MPI_INCLUDE) LIBS = $(TAU_MPI_LIBS) $(TAU_LIBS) LD_FLAGS = $(TAU_LDFLAGS) OBJS =... TARGET= a.out TARGET: $(OBJS) $(CXX) $(LDFLAGS) $(OBJS) -o $@ $(LIBS).cpp.o: $(CC) $(CFLAGS) -c $< -o $@

81 The TAU Performance SystemNRL Monterey, CA Dec. 200381 Using TAU – A tutorial  Configuration  Instrumentation  Manual  PDT- Source rewriting for C,C++, F77/90/95  MPI – Wrapper interposition library  OpenMP – Directive rewriting  Binary Instrumentation  DyninstAPI – Runtime/Rewriting binary  Java – Runtime instrumentation  Python – Runtime instrumentation  Measurement  Performance Analysis

82 The TAU Performance SystemNRL Monterey, CA Dec. 200382 Using Opari with TAU Step I: Configure KOJAK/opari [Download from http://www.fz-juelich.de/zam/kojak/] % cd kojak-0.99; cp mf/Makefile.defs.sgi Makefile.defs; edit Makefile % make Builds opari Step II: Configure TAU with Opari (used here with MPI and PDT) % configure –opari=/usr/contrib/TAU/kojak-0.99/opari -mpiinc=/usr/include –mpilib=/usr/lib64 –arch=sgi64 –c++=CC –cc=cc –pdt=/usr/contrib/TAU/pdtoolkit-3.0 % make clean; make install

83 The TAU Performance SystemNRL Monterey, CA Dec. 200383 Instrumentation of OpenMP Constructs  OPARI  OpenMP Pragma And Region Instrumentor  Source-to-Source translator to insert POMP calls around OpenMP constructs and API functions  Done: Supports  Fortran77 and Fortran90, OpenMP 2.0  C and C++, OpenMP 1.0  POMP Extensions  EPILOG and TAU POMP implementations  Preserves source code information ( #line line file )  Work in Progress: Investigating standardization through OpenMP Forum

84 The TAU Performance SystemNRL Monterey, CA Dec. 200384 OpenMP API Instrumentation  Transform  omp_#_lock()  pomp_#_lock()  omp_#_nest_lock()  pomp_#_nest_lock() [ # = init | destroy | set | unset | test ]  POMP version  Calls omp version internally  Can do extra stuff before and after call

85 The TAU Performance SystemNRL Monterey, CA Dec. 200385 Example: !$OMP PARALLEL DO Instrumentation !$OMP PARALLEL DO clauses... do loop !$OMP END PARALLEL DO !$OMP PARALLEL other-clauses... !$OMP DO schedule-clauses, ordered-clauses, lastprivate-clauses do loop !$OMP END DO !$OMP END PARALLEL DO NOWAIT !$OMP BARRIER call pomp_parallel_fork(d) call pomp_parallel_begin(d) call pomp_parallel_end(d) call pomp_parallel_join(d) call pomp_do_enter(d) call pomp_do_exit(d) call pomp_barrier_enter(d) call pomp_barrier_exit(d)

86 The TAU Performance SystemNRL Monterey, CA Dec. 200386 Opari Instrumentation: Example  OpenMP directive instrumentation pomp_for_enter(&omp_rd_2); #line 252 "stommel.c" #pragma omp for schedule(static) reduction(+: diff) private(j) firstprivate (a1,a2,a3,a4,a5) nowait for( i=i1;i<=i2;i++) { for(j=j1;j<=j2;j++){ new_psi[i][j]=a1*psi[i+1][j] + a2*psi[i-1][j] + a3*psi[i][j+1] + a4*psi[i][j-1] - a5*the_for[i][j]; diff=diff+fabs(new_psi[i][j]-psi[i][j]); } pomp_barrier_enter(&omp_rd_2); #pragma omp barrier pomp_barrier_exit(&omp_rd_2); pomp_for_exit(&omp_rd_2); #line 261 "stommel.c"

87 The TAU Performance SystemNRL Monterey, CA Dec. 200387 OPARI: Basic Usage (f90)  Reset OPARI state information  rm -f opari.rc  Call OPARI for each input source file  opari file1.f90... opari fileN.f90  Generate OPARI runtime table, compile it with ANSI C  opari -table opari.tab.c cc -c opari.tab.c  Compile modified files *.mod.f90 using OpenMP  Link the resulting object files, the OPARI runtime table opari.tab.o and the TAU POMP RTL

88 The TAU Performance SystemNRL Monterey, CA Dec. 200388 OPARI: Makefile Template (C/C++) OMPCC =...# insert C OpenMP compiler here OMPCXX =...# insert C++ OpenMP compiler here.c.o: opari $< $(OMPCC) $(CFLAGS) -c $*.mod.c.cc.o: opari $< $(OMPCXX) $(CXXFLAGS) -c $*.mod.cc opari.init: rm -rf opari.rc opari.tab.o: opari -table opari.tab.c $(CC) -c opari.tab.c myprog: opari.init myfile*.o... opari.tab.o $(OMPCC) -o myprog myfile*.o opari.tab.o -lpomp myfile1.o: myfile1.c myheader.h myfile2.o:...

89 The TAU Performance SystemNRL Monterey, CA Dec. 200389 OPARI: Makefile Template (Fortran) OMPF77 =...# insert f77 OpenMP compiler here OMPF90 =...# insert f90 OpenMP compiler here.f.o: opari $< $(OMPF77) $(CFLAGS) -c $*.mod.F.f90.o: opari $< $(OMPF90) $(CXXFLAGS) -c $*.mod.F90 opari.init: rm -rf opari.rc opari.tab.o: opari -table opari.tab.c $(CC) -c opari.tab.c myprog: opari.init myfile*.o... opari.tab.o $(OMPF90) -o myprog myfile*.o opari.tab.o -lpomp myfile1.o: myfile1.f90 myfile2.o:...

90 The TAU Performance SystemNRL Monterey, CA Dec. 200390 Tracing Hybrid Executions – TAU and Vampir

91 The TAU Performance SystemNRL Monterey, CA Dec. 200391 Profiling Hybrid Executions

92 The TAU Performance SystemNRL Monterey, CA Dec. 200392 OpenMP + MPI Ocean Modeling (HW Profile) % configure -papi=../packages/papi -openmp -c++=pgCC -cc=pgcc -mpiinc=../packages/mpich/include -mpilib=../packages/mpich/lib FP instructions Integrated OpenMP + MPI events

93 The TAU Performance SystemNRL Monterey, CA Dec. 200393 Using TAU – A tutorial  Configuration  Instrumentation  Manual  PDT- Source rewriting for C,C++, F77/90/95  MPI – Wrapper interposition library  OpenMP – Directive rewriting  Binary Instrumentation  DyninstAPI – Runtime/Rewriting binary  Java – Runtime instrumentation  Python – Runtime instrumentation  Measurement  Performance Analysis

94 The TAU Performance SystemNRL Monterey, CA Dec. 200394 Dynamic Instrumentation  TAU uses DyninstAPI for runtime code patching  tau_run (mutator) loads measurement library  Instruments mutatee  MPI issues:  one mutator per executable image [TAU, DynaProf]  one mutator for several executables [Paradyn, DPCL]

95 The TAU Performance SystemNRL Monterey, CA Dec. 200395 Using DyninstAPI with TAU Step I: Install DyninstAPI[Download from http://www.dyninst.org] % cd dyninstAPI-4.0.2/core; make Set DyninstAPI environment variables (including LD_LIBRARY_PATH) Step II: Configure TAU with Dyninst % configure –dyninst=/usr/local/dyninstAPI-4.0.2 % make clean; make install Builds / /bin/tau_run % tau_run [ ] [-Xrun ] [-f ] [-v] % tau_run –o a.inst.out a.out Rewrites a.out % tau_run klargest Instruments klargest with TAU calls and executes it % tau_run -XrunTAUsh-papi a.out Loads libTAUsh-papi.so instead of libTAU.so for measurements NOTE: All compilers and platforms are not yet supported (work in progress)

96 The TAU Performance SystemNRL Monterey, CA Dec. 200396 SIMPLE Hydrodynamics Benchmark

97 The TAU Performance SystemNRL Monterey, CA Dec. 200397 Using TAU – A tutorial  Configuration  Instrumentation  Manual  PDT- Source rewriting for C,C++, F77/90/95  MPI – Wrapper interposition library  OpenMP – Directive rewriting  Binary Instrumentation  DyninstAPI – Runtime/Rewriting binary  Java – Runtime instrumentation  Python – Runtime instrumentation  Measurement  Performance Analysis

98 The TAU Performance SystemNRL Monterey, CA Dec. 200398 Multi-Threading Performance Measurement  General issues  Thread identity and per-thread data storage  Performance measurement support and synchronization  Fine-grained parallelism  different forms and levels of threading  greater need for efficient instrumentation  TAU general threading and measurement model  Common thread layer and measurement support  Interface to system specific libraries (reg, id, sync)  Target different thread systems with core functionality  Pthreads, Windows, Java, SMARTS, Tulip, OpenMP

99 The TAU Performance SystemNRL Monterey, CA Dec. 200399 Virtual Machine Performance Instrumentation  Integrate performance system with VM  Captures robust performance data (e.g., thread events)  Maintain features of environment  portability, concurrency, extensibility, interoperation  Allow use in optimization methods  JVM Profiling Interface (JVMPI)  Generation of JVM events and hooks into JVM  Profiler agent (TAU) loaded as shared object  registers events of interest and address of callback routine  Access to information on dynamically loaded classes  No need to modify Java source, bytecode, or JVM

100 The TAU Performance SystemNRL Monterey, CA Dec. 2003100 Using TAU with Java Applications Step I: Sun JDK 1.2+ [download from www.javasoft.com] Step II: Configure TAU with JDK (v 1.2 or better) % configure –jdk=/usr/java2 –TRACE -PROFILE % make clean; make install Builds / /lib/libTAU.so For Java (without instrumentation): % java application With instrumentation: % java -XrunTAU application % java -XrunTAU:exclude=sun/io,java application Excludes sun/io/* and java/* classes

101 The TAU Performance SystemNRL Monterey, CA Dec. 2003101 TAU Profiling of Java Application (SciVis) Profile for each Java thread Captures events for different Java packages 24 threads of execution! global routine profile

102 The TAU Performance SystemNRL Monterey, CA Dec. 2003102 TAU Tracing of Java Application (SciVis) Performance groups Timeline display Parallelism view

103 The TAU Performance SystemNRL Monterey, CA Dec. 2003103 Vampir Dynamic Call Tree View (SciVis) Per thread call tree Annotated performance Expanded call tree

104 The TAU Performance SystemNRL Monterey, CA Dec. 2003104 Using TAU – A tutorial  Configuration  Instrumentation  Manual  PDT- Source rewriting for C,C++, F77/90/95  MPI – Wrapper interposition library  OpenMP – Directive rewriting  Binary Instrumentation  DyninstAPI – Runtime/Rewriting binary  Java – Runtime instrumentation  Python – Runtime instrumentation  Measurement  Performance Analysis

105 The TAU Performance SystemNRL Monterey, CA Dec. 2003105 Using TAU with Python Applications Step I: Configure TAU with Python % configure –pythoninc=/usr/include/python2.2/include % make clean; make install Builds / /lib/ /pytau.py and tau.py packages for manual and automatic instrumentation respectively % setenv PYTHONPATH $PYTHONPATH\: / /lib/[ ]

106 The TAU Performance SystemNRL Monterey, CA Dec. 2003106 Python Manual Instrumentation Example #!/usr/bin/env/python import pytau From time import sleep x = pytau.profileTimer(``Timer A’’) pytau.start(x) print “ Sleeping for 5 seconds ” sleep(5) pytau.stop(x) Running: % setenv PYTHONPATH / /lib %./application.py

107 The TAU Performance SystemNRL Monterey, CA Dec. 2003107 Python Automatic Instrumentation Example #!/usr/bin/env/python import tau from time import sleep def f2(): print “ In f2: Sleeping for 2 seconds ” sleep(2) def f1(): print “ In f1: Sleeping for 3 seconds ” sleep(3) def OurMain(): f1() tau.run(‘OurMain()’) Running: % setenv PYTHONPATH / /lib %./auto.py Instruments OurMain, f1, f2, print…

108 The TAU Performance SystemNRL Monterey, CA Dec. 2003108 Using TAU – A tutorial  Configuration  Instrumentation  Manual  PDT- Source rewriting for C,C++, F77/90/95  MPI – Wrapper interposition library  OpenMP – Directive rewriting  Binary Instrumentation  DyninstAPI – Runtime/Rewriting binary  Java – Runtime instrumentation  Python – Runtime instrumentation  Measurement  Performance Analysis

109 The TAU Performance SystemNRL Monterey, CA Dec. 2003109 TAU Measurement  Performance information  High-resolution timer library (real-time / virtual clocks)  General software counter library (user-defined events)  Hardware performance counters  PAPI (Performance API) (UTK, Ptools Consortium)  consistent, portable API  one event or multiple counters  Organization  Node, context, thread levels  Profile groups for collective events (runtime selective)  Performance data mapping between software levels

110 The TAU Performance SystemNRL Monterey, CA Dec. 2003110 TAU Measurement (continued)  Parallel profiling  Function-level, block-level, statement-level  Supports user-defined events  TAU parallel profile database  Call path profiles  Hardware counts values (in replace of time)  Tracing  All profile-level events  Interprocess communication events  User-configurable measurement library (user controlled)

111 The TAU Performance SystemNRL Monterey, CA Dec. 2003111 Setup: Running Applications % setenv PROFILEDIR /home/data/experiments/profile/01 % setenv TRACEDIR/home/data/experiments/trace/01(optional) % set path=($path / /bin) % setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH\: / /lib For PAPI (1 counter): % setenv PAPI_EVENT PAPI_FP_INS For PAPI (multiplecounters): % setenv COUNTER1 PAPI_FP_INS (PAPI’s Floating point ins) % setenv COUNTER2 PAPI_L1_DCM (PAPI’s L1 Data cache misses) % setenv COUNTER3 P_VIRTUAL_TIME (PAPI’s virtual time) % setenv COUNTER4 LINUX_TIMERS (Wallclock time) % mpirun –np % llsubmit job.sh For Callpath Profiling: % setenv TAU_CALLPATH_DEPTH 10

112 The TAU Performance SystemNRL Monterey, CA Dec. 2003112 Performance Mapping  Associate performance with “significant” entities (events)  Source code points are important  Functions, regions, control flow events, user events  Execution process and thread entities are important  Some entities are more abstract, harder to measure  Consider callgraph (callpath) profiling  Measure time (metric) along an edge (path) of callgraph  Incident edge gives parent / child view  Edge sequence (path) gives parent / descendant view  Problem: Callpath profiling when callgraph is unknown  Determine callgraph dynamically at runtime  Map performance measurement to dynamic call path state

113 The TAU Performance SystemNRL Monterey, CA Dec. 2003113 A B C D HG FE I Callgraph (Callpath) Profiling  Measure time (metric) along an edge (path) of callgraph  Incident edge gives parent / child view  Edge sequence (path) gives parent / descendant view  1-level callpath  Immediate descendant  A  B, E  I, D  H  C  H ?  k-level callpath  k call descendant  2-level: A  D, C  I  2-level: A  I ?  3-level: A  H     

114 The TAU Performance SystemNRL Monterey, CA Dec. 2003114 k-Level Callpath Implementation in TAU  TAU maintains a performance event (routine) callstack  Profiled routine (child) looks in callstack for parent  Previous profiled performance event is the parent  A callpath profile structure created first time parent calls  TAU records parent in a callgraph map for child  String representing k-level callpath used as its key  “a( )=>b( )=>c()” : name for time spent in “c” when called by “b” when “b” is called by “a”  Map returns pointer to callpath profile structure  k-level callpath is profiled using this profiling data  Set environment variable TAU_CALLPATH_DEPTH to depth  Build upon TAU’s performance mapping technology  Measurement is independent of instrumentation  Use –PROFILECALLPATH to configure TAU

115 The TAU Performance SystemNRL Monterey, CA Dec. 2003115 k-Level Callpath Implementation in TAU

116 The TAU Performance SystemNRL Monterey, CA Dec. 2003116 Using TAU with Vampir  Configure TAU with -TRACE option % configure –TRACE –SGITIMERS …  Execute application % mpirun –np 4 a.out  This generates TAU traces and event descriptors  Merge all traces using tau_merge % tau_merge *.trc app.trc  Convert traces to Vampir Trace format using tau_convert % tau_convert –pv app.trc tau.edf app.pv Note: Use –vampir instead of –pv for multi-threaded traces  Load generated trace file in Vampir % vampir app.pv

117 The TAU Performance SystemNRL Monterey, CA Dec. 2003117 Case Study: Utah ASCI/ASAP Level 1 Center  C-SAFE was established at U. Utah to build a problem- solving environment (PSE) for the numerical simulation of accidental fires and explosions  Fundamental chemistry and engineering physics models  Coupled with non-linear solvers, optimization, computational steering, visualization, and experimental data verification  Very large-scale simulations  Computer science problems:  Coupling of multiple simulation codes  Software engineering across diverse expert teams  Achieving high performance on large-scale systems

118 The TAU Performance SystemNRL Monterey, CA Dec. 2003118 Example C-SAFE Simulation Problems ∑ Heptane fire simulation Material stress simulation Typical C-SAFE simulation with a billion degrees of freedom and non-linear time dynamics

119 The TAU Performance SystemNRL Monterey, CA Dec. 2003119 Uintah High-Level Component View

120 The TAU Performance SystemNRL Monterey, CA Dec. 2003120 Uintah Computational Framework  Execution model based on software (macro) dataflow  Exposes parallelism and hides data transport latency  Computations expressed a directed acyclic graphs of tasks  consumes input and produces output (input to future task)  input/outputs specified for each patch in a structured grid  Abstraction of global single-assignment memory  DataWarehouse  Directory mapping names to values (array structured)  Write value once then communicate to awaiting tasks  Task graph gets mapped to processing resources  Communications schedule approximates global optimal

121 The TAU Performance SystemNRL Monterey, CA Dec. 2003121 Uintah Task Graph (Material Point Method)  Diagram of named tasks (ovals) and data (edges)  Imminent computation  Dataflow-constrained  MPM  Newtonian material point motion time step  Solid: values defined at material point (particle)  Dashed: values defined at vertex (grid)  Prime (‘): values updated during time step

122 The TAU Performance SystemNRL Monterey, CA Dec. 2003122 Uintah PSE  UCF automatically sets up:  Domain decomposition  Inter-processor communication with aggregation/reduction  Parallel I/O  Checkpoint and restart  Performance measurement and analysis (stay tuned)  Software engineering  Coding standards  CVS (Commits: Y3 - 26.6 files/day, Y4 - 29.9 files/day)  Correctness regression testing with bugzilla bug tracking  Nightly build (parallel compiles)  170,000 lines of code (Fortran and C++ tasks supported)

123 The TAU Performance SystemNRL Monterey, CA Dec. 2003123 Performance Technology Integration  Uintah present challenges to performance integration  Software diversity and structure  UCF middleware, simulation code modules  component-based hierarchy  Portability objectives  cross-language and cross-platform  multi-parallelism: thread, message passing, mixed  Scalability objectives  High-level programming and execution abstractions  Requires flexible and robust performance technology  Requires support for performance mapping

124 The TAU Performance SystemNRL Monterey, CA Dec. 2003124 Task execution time dominates (what task?) MPI communication overheads (where?) Task Execution in Uintah Parallel Scheduler  Profile methods and functions in scheduler and in MPI library Task execution time distribution  Need to map performance data!

125 The TAU Performance SystemNRL Monterey, CA Dec. 2003125 Semantics-Based Performance Mapping  Associate performance measurements with high-level semantic abstractions  Need mapping support in the performance measurement system to assign data correctly

126 The TAU Performance SystemNRL Monterey, CA Dec. 2003126 Semantic Entities/Attributes/Associations (SEAA)  New dynamic mapping scheme  Entities defined at any level of abstraction  Attribute entity with semantic information  Entity-to-entity associations  Two association types (implemented in TAU API)  Embedded – extends data structure of associated object to store performance measurement entity  External – creates an external look-up table using address of object as the key to locate performance measurement entity

127 The TAU Performance SystemNRL Monterey, CA Dec. 2003127 Uintah Task Performance Mapping  Uintah partitions individual particles across processing elements (processes or threads)  Simulation tasks in task graph work on particles  Tasks have domain-specific character in the computation  “interpolate particles to grid” in Material Point Method  Task instances generated for each partitioned particle set  Execution scheduled with respect to task dependencies  How to attributed execution time among different tasks  Assign semantic name (task type) to a task instance  SerialMPM::interpolateParticleToGrid  Map TAU timer object to (abstract) task (semantic entity)  Look up timer object using task type (semantic attribute)  Further partition along different domain-specific axes

128 The TAU Performance SystemNRL Monterey, CA Dec. 2003128 Using External Associations  Two level mappings:  Level 1:  Level 2:  Embedded association vs External association Data (object) Performance Data... Hash Table

129 The TAU Performance SystemNRL Monterey, CA Dec. 2003129 Task Performance Mapping Instrumentation void MPIScheduler::execute(const ProcessorGroup * pc, DataWarehouseP & old_dw, DataWarehouseP & dw ) {... TAU_MAPPING_CREATE( task->getName(), "[MPIScheduler::execute()]", (TauGroup_t)(void*)task->getName(), task->getName(), 0);... TAU_MAPPING_OBJECT(tautimer) TAU_MAPPING_LINK(tautimer,(TauGroup_t)(void*)task->getName()); // EXTERNAL ASSOCIATION... TAU_MAPPING_PROFILE_TIMER(doitprofiler, tautimer, 0) TAU_MAPPING_PROFILE_START(doitprofiler,0); task->doit(pc); TAU_MAPPING_PROFILE_STOP(0);... }

130 The TAU Performance SystemNRL Monterey, CA Dec. 2003130 Task Performance Mapping (Profile) Performance mapping for different tasks Mapped task performance across processes

131 The TAU Performance SystemNRL Monterey, CA Dec. 2003131 Task Performance Mapping (Trace) Work packet computation events colored by task type Distinct phases of computation can be identifed based on task

132 The TAU Performance SystemNRL Monterey, CA Dec. 2003132 Task Performance Mapping (Trace - Zoom) Startup communication imbalance

133 The TAU Performance SystemNRL Monterey, CA Dec. 2003133 Task Performance Mapping (Trace - Parallelism) Communication / load imbalance

134 The TAU Performance SystemNRL Monterey, CA Dec. 2003134 Comparing Uintah Traces for Scalability Analysis 8 processes 32 processes

135 The TAU Performance SystemNRL Monterey, CA Dec. 2003135 Scaling Performance Optimizations Last year: initial “correct” scheduler Reduce communication by 10 x Reduce task graph overhead by 20 x ASCI Nirvana SGI Origin 2000 Los Alamos National Laboratory

136 The TAU Performance SystemNRL Monterey, CA Dec. 2003136 Scalability to 2000 Processors (Fall 2001) ASCI Nirvana SGI Origin 2000 Los Alamos National Laboratory

137 The TAU Performance SystemNRL Monterey, CA Dec. 2003137 Concluding Remarks  Complex software and parallel computing systems pose challenging performance analysis problems that require robust methodologies and tools  To build more sophisticated performance tools, existing proven performance technology must be utilized  Performance tools must be integrated with software and systems models and technology  Performance engineered software  Function consistently and coherently in software and system environments  PAPI and TAU performance systems offer robust performance technology that can be broadly integrated

138 The TAU Performance SystemNRL Monterey, CA Dec. 2003138 Support Acknowledgements  Department of Energy (DOE)  Office of Science contracts  University of Utah DOE ASCI Level 1 sub-contract  DOE ASCI Level 3 (LANL, LLNL)  NSF National Young Investigator (NYI) award  Research Centre Juelich  John von Neumann Institute for Computing  Dr. Bernd Mohr  Los Alamos National Laboratory

139 The TAU Performance SystemNRL Monterey, CA Dec. 2003139 Setup for Training Session  SSH: Go to Edit->Properties-> Tunnelling and check Tunnel X11 connections  Login to daley.nrlmry.navy.mil  Try % xclock &

140 The TAU Performance SystemNRL Monterey, CA Dec. 2003140 Training Session % cp –r /usr/contrib/TAU/tau-2.13 % set path=(/usr/java2/bin $path) % set path=($path /usr/contrib/TAU/tau- 2.13/sgi64/bin) % setenv PAL_ROOT /usr/contrib/TAU/vampir-4.0 % set path=($path $PAL_ROOT/bin) % cd /tau-2.13 % configure –arch=sgi64 –mpiinc=/usr/include –mpilib=/usr/lib64 % make clean install; cd examples/NPB2.3 % gmake clean; gmake; cd bin; % mpirun –np 4 sp.W.4; paraprof % set path=($path /usr/contrib/TAU/pdtoolkit- 3.0/sgi64/bin)

141 The TAU Performance SystemNRL Monterey, CA Dec. 2003141 Using TAU+PAPI+PDT+MPI for F90  This will run your job in the queue: ~campbell/com/runsmpi  % cd /  % ls /usr/contrib/TAU/tau-2.13/sgi64/lib/Makefile.*  For the F90+MPI example, you want: Makefile.tau- papiwallclock-multiplecounters-papivirtual-mpi-papi-pdt  To see data in textual format: % pprof | more To see data in paraprof: % paraprof

142 The TAU Performance SystemNRL Monterey, CA Dec. 2003142 Using TAU with VAMPIR  In your.cshrc file: setenv PAL_ROOT /usr/contrib/TAU/vampir-4.0 set path=($path $PAL_ROOT/bin)  Select /usr/contrib/TAU/tau-2.13/sgi64/Makefile.tau- mpi-pdt-trace as your stub makefile  Run your application (e.g., examples/mpi_pdt/f90).TAU produces *.edf *.trc files  Merge and convert the trace files:  % tau_merge tautrace*.trc app.trc  % tau_convert -pv app.trc tau.edf app.pv  % vampir app.pv  See Global displays -> Timeline, Zoom in/out of segments.


Download ppt "The TAU Performance System Sameer Shende, Allen D. Malony, Robert Bell University of Oregon."

Similar presentations


Ads by Google