Download presentation
Presentation is loading. Please wait.
1
The TAU Performance System Sameer Shende, Allen D. Malony, Robert Bell University of Oregon
2
The TAU Performance SystemNRL Monterey, CA Dec. 20032 Outline Motivation Part I: What is TAU? Performance Analysis and Visualization with TAU Pprof Paraprof Paravis Performance Database Part II: Using TAU – a tutorial Part III: A Case Study – Uintah [U. Utah] (if time permits) Conclusion
3
The TAU Performance SystemNRL Monterey, CA Dec. 20033 Research Motivation Tools for performance problem solving Empirical-based performance optimization process Performance technology concerns characterization Performance Tuning Performance Diagnosis Performance Experimentation Performance Observation hypotheses properties Instrumentation Measurement Analysis Visualization Performance Technology Experiment management Performance database Performance Technology
4
The TAU Performance SystemNRL Monterey, CA Dec. 20034 TAU Performance System Tuning and Analysis Utilities (11+ year project effort) Performance system framework for scalable parallel and distributed high-performance computing Targets a general complex system computation model nodes / contexts / threads Multi-level: system / software / parallelism Measurement and analysis abstraction Integrated toolkit for performance instrumentation, measurement, analysis, and visualization Portable performance profiling and tracing facility Open software approach with technology integration University of Oregon, Forschungszentrum Jülich, LANL
5
The TAU Performance SystemNRL Monterey, CA Dec. 20035 TAU Performance Systems Goals Multi-level performance instrumentation Multi-language automatic source instrumentation Flexible and configurable performance measurement Widely-ported parallel performance profiling system Computer system architectures and operating systems Different programming languages and compilers Support for multiple parallel programming paradigms Multi-threading, message passing, mixed-mode, hybrid Support for performance mapping Support for object-oriented and generic programming Integration in complex software systems and applications
6
The TAU Performance SystemNRL Monterey, CA Dec. 20036 Definitions – Profiling Profiling Recording of summary information during execution inclusive, exclusive time, # calls, hardware statistics, … Reflects performance behavior of program entities functions, loops, basic blocks user-defined “semantic” entities Very good for low-cost performance assessment Helps to expose performance bottlenecks and hotspots Implemented through sampling: periodic OS interrupts or hardware counter traps instrumentation: direct insertion of measurement code
7
The TAU Performance SystemNRL Monterey, CA Dec. 20037 Definitions – Tracing Tracing Recording of information about significant points (events) during program execution entering/exiting code region (function, loop, block, …) thread/process interactions (e.g., send/receive message) Save information in event record timestamp CPU identifier, thread identifier Event type and event-specific information Event trace is a time-sequenced stream of event records Can be used to reconstruct dynamic program behavior Typically requires code instrumentation
8
The TAU Performance SystemNRL Monterey, CA Dec. 20038 Event Tracing: Instrumentation, Monitor, Trace 1master 2slave 3... void slave { trace(ENTER, 2);... recv(A, tag, buf); trace(RECV, A);... trace(EXIT, 2); } void master { trace(ENTER, 1);... trace(SEND, B); send(B, tag, buf);... trace(EXIT, 1); } MONITOR 58AENTER1 60BENTER2 62ASENDB 64AEXIT1 68BRECVA... 69BEXIT2... CPU A: CPU B: Event definition timestamp
9
The TAU Performance SystemNRL Monterey, CA Dec. 20039 Event Tracing: “Timeline” Visualization 1master 2slave 3... 58AENTER1 60BENTER2 62ASENDB 64AEXIT1 68BRECVA... 69BEXIT2... main master slave 58606264666870 B A
10
The TAU Performance SystemNRL Monterey, CA Dec. 200310 General Complex System Computation Model Node: physically distinct shared memory machine Message passing node interconnection network Context: distinct virtual memory space within node Thread: execution threads (user/system) in context memory Node VM space Context SMP Threads node memory … … Interconnection Network Inter-node message communication * * physical view model view
11
The TAU Performance SystemNRL Monterey, CA Dec. 200311 TAU Performance System Architecture EPILOG Paraver
12
The TAU Performance SystemNRL Monterey, CA Dec. 200312 Strategies for Empirical Performance Evaluation Empirical performance evaluation as a series of performance experiments Experiment trials describing instrumentation and measurement requirements Where/When/How axes of empirical performance space where are performance measurements made in program routines, loops, statements… when is performance instrumentation done compile-time, while pre-processing, runtime… how are performance measurement/instrumentation chosen profiling with hw counters, tracing, callpath profiling…
13
The TAU Performance SystemNRL Monterey, CA Dec. 200313 TAU Instrumentation Approach Support for standard program events Routines Classes and templates Statement-level blocks Support for user-defined events Begin/End events (“user-defined timers”) Atomic events Selection of event statistics Support definition of “semantic” entities for mapping Support for event groups Instrumentation optimization
14
The TAU Performance SystemNRL Monterey, CA Dec. 200314 TAU Instrumentation Flexible instrumentation mechanisms at multiple levels Source code manual automatic C, C++, F77/90/95 (Program Database Toolkit (PDT)) OpenMP (directive rewriting (Opari), POMP spec) Object code pre-instrumented libraries (e.g., MPI using PMPI) statically-linked and dynamically-linked Executable code dynamic instrumentation (pre-execution) (DynInstAPI) virtual machine instrumentation (e.g., Java using JVMPI)
15
The TAU Performance SystemNRL Monterey, CA Dec. 200315 Multi-Level Instrumentation Targets common measurement interface TAU API Multiple instrumentation interfaces Simultaneously active Information sharing between interfaces Utilizes instrumentation knowledge between levels Selective instrumentation Available at each level Cross-level selection Targets a common performance model Presents a unified view of execution Consistent performance events
16
The TAU Performance SystemNRL Monterey, CA Dec. 200316 Program Database Toolkit (PDT) Program code analysis framework develop source-based tools High-level interface to source code information Integrated toolkit for source code parsing, database creation, and database query Commercial grade front-end parsers Portable IL analyzer, database format, and access API Open software approach for tool development Multiple source languages Implement automatic performance instrumentation tools tau_instrumentor
17
The TAU Performance SystemNRL Monterey, CA Dec. 200317 Program Database Toolkit (PDT) Application / Library C / C++ parser Fortran parser F77/90/95 C / C++ IL analyzer Fortran IL analyzer Program Database Files IL DUCTAPE PDBhtml SILOON CHASM TAU_instr Program documentation Application component glue C++ / F90/95 interoperability Automatic source instrumentation
18
The TAU Performance SystemNRL Monterey, CA Dec. 200318 PDT 3.0 Functionality C++ statement-level information implementation for, while loops, declarations, initialization, assignment… PDB records defined for most constructs DUCTAPE Processes PDB 1.x, 2.x, 3.x uniformly PDT applications XMLgen PDB to XML converter Used for CHASM and CCA tools PDBstmt Statement callgraph display tool
19
The TAU Performance SystemNRL Monterey, CA Dec. 200319 PDT 3.0 Functionality (continued) Cleanscape Flint parser fully integrated for F90/95 Flint parser is very robust Produces PDB records for TAU instrumentation (stage 1) Linux (x86, IA-64, Opteron, Power4), HP Tru64, IBM AIX, Cray X1,T3E, Solaris, SGI, Apple, Windows Full PDB 2.0 specification (stage 2) [Q1 ‘04] Statement level support (stage 3) [Q3 ‘04] PDT 3.0 released at SC2003 URL: http://www.cs.uoregon.edu/research/paracomp/pdtoolkit
20
The TAU Performance SystemNRL Monterey, CA Dec. 200320 TAU Performance Measurement TAU supports profiling and tracing measurement Robust timing and hardware performance support using PAPI Support for online performance monitoring Profile and trace performance data export to file system Selective exporting Extension of TAU measurement for multiple counters Creation of user-defined TAU counters Access to system-level metrics Support for callpath measurement Integration with system-level performance data Linux MAGNET/MUSE (Wu Feng, LANL)
21
The TAU Performance SystemNRL Monterey, CA Dec. 200321 TAU Measurement with Multiple Counters Extend event measurement to capture multiple metrics Begin/end (interval) events User-defined (atomic) events Multiple performance data sources can be queried Associate counter function list to event Defined statically or dynamically Different counter sources Timers and hardware counters User-defined counters (application specified) System-level counters Monotonically increasing required for begin/end events Extend user-defined counters to system-level counter
22
The TAU Performance SystemNRL Monterey, CA Dec. 200322 TAU Measurement Performance information Performance events High-resolution timer library (real-time / virtual clocks) General software counter library (user-defined events) Hardware performance counters PAPI (Performance API) (UTK, Ptools Consortium) consistent, portable API Organization Node, context, thread levels Profile groups for collective events (runtime selective) Performance data mapping between software levels
23
The TAU Performance SystemNRL Monterey, CA Dec. 200323 TAU Measurement Options Parallel profiling Function-level, block-level, statement-level Supports user-defined events TAU parallel profile data stored during execution Hardware counts values Support for multiple counters Support for callgraph and callpath profiling Tracing All profile-level events Inter-process communication events Trace merging and format conversion
24
The TAU Performance SystemNRL Monterey, CA Dec. 200324 Grouping Performance Data in TAU Profile Groups A group of related routines forms a profile group Statically defined TAU_DEFAULT, TAU_USER[1-5], TAU_MESSAGE, TAU_IO, … Dynamically defined group name based on string, such as “adlib” or “particles” runtime lookup in a map to get unique group identifier uses tau_instrumentor to instrument Ability to change group names at runtime Group-based instrumentation and measurement control
25
The TAU Performance SystemNRL Monterey, CA Dec. 200325 TAU Analysis Parallel profile analysis Pprof parallel profiler with text-based display ParaProf Graphical, scalable, parallel profile analysis and display Trace analysis and visualization Trace merging and clock adjustment (if necessary) Trace format conversion (ALOG, SDDF, VTF, Paraver) Trace visualization using Vampir (Pallas/Intel)
26
The TAU Performance SystemNRL Monterey, CA Dec. 200326 Pprof Output (NAS Parallel Benchmark – LU) Intel Quad PIII Xeon F90 + MPICH Profile - Node - Context - Thread Events - code - MPI
27
The TAU Performance SystemNRL Monterey, CA Dec. 200327 Terminology – Example For routine “int main( )”: Exclusive time 100-20-50-20=10 secs Inclusive time 100 secs Calls 1 call Subrs (no. of child routines called) 3 Inclusive time/call 100secs int main( ) { /* takes 100 secs */ f1(); /* takes 20 secs */ f2(); /* takes 50 secs */ f1(); /* takes 20 secs */ /* other work */ } /* Time can be replaced by counts */
28
The TAU Performance SystemNRL Monterey, CA Dec. 200328 ParaProf (NAS Parallel Benchmark – LU) node,context, threadGlobal profiles Routine profile across all nodes Event legend Individual profile
29
The TAU Performance SystemNRL Monterey, CA Dec. 200329 TAU + Vampir (NAS Parallel Benchmark – LU) Timeline display Callgraph display Parallelism display Communications display
30
The TAU Performance SystemNRL Monterey, CA Dec. 200330 PETSc ex19 (Tracing) Commonly seen communicaton behavior
31
The TAU Performance SystemNRL Monterey, CA Dec. 200331 TAU’s EVH1 Execution Trace in Vampir MPI_Alltoall is an execution bottleneck
32
The TAU Performance SystemNRL Monterey, CA Dec. 200332 TAU Performance System Status Computing platforms (selected) IBM SP / pSeries, SGI Origin 2K/3K, Cray T3E / SV-1 / X1, HP (Compaq) SC (Tru64), Sun, Hitachi SR8000, NEC SX-5/6, Linux clusters (IA-32/64, Alpha, PPC, PA- RISC, Power, Opteron), Apple (G4/5, OS X), Windows Programming languages C, C++, Fortran 77/90/95, HPF, Java, OpenMP, Python Thread libraries pthreads, SGI sproc, Java,Windows, OpenMP Compilers (selected) Intel KAI (KCC, KAP/Pro), PGI, GNU, Fujitsu, Sun, Microsoft, SGI, Cray, IBM (xlc, xlf), Compaq, NEC, Intel
33
The TAU Performance SystemNRL Monterey, CA Dec. 200333 Performance Analysis and Visualization Analysis of parallel profile and trace measurement Parallel profile analysis ParaProf ParaVis Profile generation from trace data Performance database framework (PerfDBF) Parallel trace analysis Translation to VTF 3.0 and EPILOG Integration with VNG (Technical University of Dresden) Online parallel analysis and visualization
34
The TAU Performance SystemNRL Monterey, CA Dec. 200334 ParaProf Framework Architecture Portable, extensible, and scalable tool for profile analysis Try to offer “best of breed” capabilities to analysts Build as profile analysis framework for extensibility
35
The TAU Performance SystemNRL Monterey, CA Dec. 200335 Profile Manager Window Structured AMR toolkit (SAMRAI++), LLNL
36
The TAU Performance SystemNRL Monterey, CA Dec. 200336 Full Profile Window (Exclusive Time) 512 processes
37
The TAU Performance SystemNRL Monterey, CA Dec. 200337 Node / Context / Thread Profile Window
38
The TAU Performance SystemNRL Monterey, CA Dec. 200338 Derived Metrics
39
The TAU Performance SystemNRL Monterey, CA Dec. 200339 Full Profile Window (Metric-specific) 512 processes
40
The TAU Performance SystemNRL Monterey, CA Dec. 200340 ParaProf Enhancements Readers completely separated from the GUI Access to performance profile database Profile translators mpiP, papiprof, dynaprof Callgraph display prof/gprof style with hyperlinks Integration of 3D performance plotting library Scalable profile analysis Statistical histograms, cluster analysis, … Generalized programmable analysis engine Cross-experiment analysis
41
The TAU Performance SystemNRL Monterey, CA Dec. 200341 ParaVis Performance Visualizer Performance Analyzer Performance Data Reader Scalable parallel profile analysis Scalable performance displays 3D graphics Analysis across profile samples Allow for runtime use Animated / interactive visualization Initially develop with SCIRun Computational environment Performance graphics toolkit Portable plotting library OpenGL
42
The TAU Performance SystemNRL Monterey, CA Dec. 200342 Performance Visualization in SCIRun SCIRun program EVH1, IBM EVH1, Linux IA-32
43
The TAU Performance SystemNRL Monterey, CA Dec. 200343 “Terrain” Visualization (Full profile) F Uintah
44
The TAU Performance SystemNRL Monterey, CA Dec. 200344 “Scatterplot” Visualization Each point coordinate determined by three values: MPI_Reduce MPI_Recv MPI_Waitsome Min/Max value range Effective for cluster analysis Uintah
45
The TAU Performance SystemNRL Monterey, CA Dec. 200345 Empirical-Based Performance Optimization characterization Performance Tuning Performance Diagnosis Performance Experimentation Performance Observation hypotheses properties observability requirements ? Process Experiment Schemas Experiment Trials Experiment management
46
The TAU Performance SystemNRL Monterey, CA Dec. 200346 TAU Performance Database Framework Performance analysis programs Performance analysis and query toolkit profile data only XML representation project / experiment / trial PerfDML translators... ORDB PostgreSQL PerfDB Performance data description Raw performance data Other tools
47
The TAU Performance SystemNRL Monterey, CA Dec. 200347 PerfDBF Components Performance Data Meta Language (PerfDML) Common performance data representation Performance meta-data description PerfDML translators to common data representation Performance DataBase (PerfDB) Standard database technology (SQL) Free, robust database software (PostgresSQL, MySQL) Commonly available APIs Performance DataBase Toolkit (PerfDBT) Commonly used modules for query and analysis PerfDB API to facilitate analysis tool development
48
The TAU Performance SystemNRL Monterey, CA Dec. 200348 PerfDBF Browser
49
The TAU Performance SystemNRL Monterey, CA Dec. 200349 PerfDBF Cross-Trial Analysis
50
The TAU Performance SystemNRL Monterey, CA Dec. 200350 TAU Performance System Status Computing platforms IBM SP, SGI Origin 2K/3K, ASCI Red, Apple, Cray X1, SV1, T3E, HP/Compaq SC, HP Superdome, Sun, Windows, Linux (IA-32, Opteron, IA-64, Alpha…), NEC, Hitachi, … Programming languages C, C++, Fortran 77/90, HPF, Java, Python Thread libraries pthreads, Java,Windows, Tulip, SMARTS, OpenMP Compilers Cray, KAI, PGI, GNU, Fujitsu, Sun, Microsoft, SGI, Cray, IBM, HP-Compaq, NEC, Hitachi, HP, Absoft, NAGWare, Intel… Version 2.13 available from: http://www.cs.uoregon.edu/research/paracomp/tau
51
The TAU Performance SystemNRL Monterey, CA Dec. 200351 Using TAU – A tutorial Configuration Instrumentation Manual PDT- Source rewriting for C,C++, F77/90/95 MPI – Wrapper interposition library OpenMP – Directive rewriting Binary Instrumentation DyninstAPI – Runtime/Rewriting binary Java – Runtime instrumentation Python – Runtime instrumentation Measurement Performance Analysis
52
The TAU Performance SystemNRL Monterey, CA Dec. 200352 TAU Performance System Architecture EPILOG Paraver
53
The TAU Performance SystemNRL Monterey, CA Dec. 200353 Using TAU Install TAU % configure ; make clean install Instrument application TAU Profiling API Typically modify application makefile include TAU’s stub makefile, modify variables Set environment variables directory where profiles/traces are to be stored Execute application % mpirun –np a.out; Analyze performance data paraprof, vampir, pprof, paraver …
54
The TAU Performance SystemNRL Monterey, CA Dec. 200354 Description of Optional Packages PAPI – Measures hardware performance data e.g., floating point instructions, L1 data cache misses etc. DyninstAPI – Helps instrument an application binary at runtime or rewrites the binary EPILOG – Trace library. Epilog traces can be analyzed by EXPERT [FZJ], an automated bottleneck detection tool. Opari – Tool that instruments OpenMP programs Vampir – Commercial trace visualization tool [Pallas] Paraver – Trace visualization tool [CEPBA]
55
The TAU Performance SystemNRL Monterey, CA Dec. 200355 TAU Measurement System Configuration configure [OPTIONS] {-c++=, -cc= } Specify C++ and C compilers {-pthread, -sproc}Use pthread or SGI sproc threads -openmpUse OpenMP threads -jdk= Specify Java instrumentation (JDK) -opari= Specify location of Opari OpenMP tool -papi= Specify location of PAPI -pdt= Specify location of PDT -dyninst= Specify location of DynInst Package -mpi[inc/lib]= Specify MPI library instrumentation -python[inc/lib]= Specify Python instrumentation -epilog= Specify location of EPILOG
56
The TAU Performance SystemNRL Monterey, CA Dec. 200356 TAU Measurement System Configuration configure [OPTIONS] -TRACEGenerate binary TAU traces -PROFILE (default) Generate profiles (summary) -PROFILECALLPATHGenerate call path profiles -PROFILESTATSGenerate std. dev. statistics -MULTIPLECOUNTERSUse hardware counters + time -CPUTIMEUse usertime+system time -PAPIWALLCLOCKUse PAPI’s wallclock time -PAPIVIRTUALUse PAPI’s process virtual time -SGITIMERSUse fast IRIX timers -LINUXTIMERSUse fast x86 Linux timers
57
The TAU Performance SystemNRL Monterey, CA Dec. 200357 TAU Measurement Configuration – Examples ./configure -c++=xlC_r –pthread Use TAU with xlC_r and pthread library under AIX Enable TAU profiling (default) ./configure -TRACE –PROFILE Enable both TAU profiling and tracing ./configure -c++=xlC_r -cc=xlc_r -papi=/usr/local/packages/papi -pdt=/usr/local/pdtoolkit-3.0 –arch=ibm64 -mpiinc=/usr/lpp/ppe.poe/include -mpilib=/usr/lpp/ppe.poe/lib -MULTIPLECOUNTERS Use IBM’s xlC_r and xlc_r compilers with PAPI, PDT, MPI packages and multiple counters for measurements Typically configure multiple measurement libraries
58
The TAU Performance SystemNRL Monterey, CA Dec. 200358 TAU Manual Instrumentation API for C/C++ Initialization and runtime configuration TAU_PROFILE_INIT(argc, argv); TAU_PROFILE_SET_NODE(myNode); TAU_PROFILE_SET_CONTEXT(myContext); TAU_PROFILE_EXIT(message); TAU_REGISTER_THREAD(); Function and class methods TAU_PROFILE(name, type, group); Template TAU_TYPE_STRING(variable, type); TAU_PROFILE(name, type, group); CT(variable); User-defined timing TAU_PROFILE_TIMER(timer, name, type, group); TAU_PROFILE_START(timer); TAU_PROFILE_STOP(timer);
59
The TAU Performance SystemNRL Monterey, CA Dec. 200359 TAU Measurement API (continued) User-defined events TAU_REGISTER_EVENT(variable, event_name); TAU_EVENT(variable, value); TAU_PROFILE_STMT(statement); Mapping TAU_MAPPING(statement, key); TAU_MAPPING_OBJECT(funcIdVar); TAU_MAPPING_LINK(funcIdVar, key); TAU_MAPPING_PROFILE (funcIdVar); TAU_MAPPING_PROFILE_TIMER(timer, funcIdVar); TAU_MAPPING_PROFILE_START(timer); TAU_MAPPING_PROFILE_STOP(timer); Reporting TAU_REPORT_STATISTICS(); TAU_REPORT_THREAD_STATISTICS();
60
The TAU Performance SystemNRL Monterey, CA Dec. 200360 Manual Instrumentation – C++ Example #include int main(int argc, char **argv) { TAU_PROFILE(“int main(int, char **)”, “ ”, TAU_DEFAULT); TAU_PROFILE_INIT(argc, argv); TAU_PROFILE_SET_NODE(0); /* for sequential programs */ foo(); return 0; } int foo(void) { TAU_PROFILE(“int foo(void)”, “ ”, TAU_DEFAULT); // measures entire foo() TAU_PROFILE_TIMER(t, “foo(): for loop”, “[23:45 file.cpp]”, TAU_USER); TAU_PROFILE_START(t); for(int i = 0; i < N ; i++){ work(i); } TAU_PROFILE_STOP(t); // other statements in foo … }
61
The TAU Performance SystemNRL Monterey, CA Dec. 200361 Manual Instrumentation – C Example #include int main(int argc, char **argv) { TAU_PROFILE_TIMER(tmain, “int main(int, char **)”, “ ”, TAU_DEFAULT); TAU_PROFILE_INIT(argc, argv); TAU_PROFILE_SET_NODE(0); /* for sequential programs */ TAU_PROFILE_START(tmain); foo(); … TAU_PROFILE_STOP(tmain); return 0; } int foo(void) { TAU_PROFILE_TIMER(t, “foo()”, “ ”, TAU_USER); TAU_PROFILE_START(t); for(int i = 0; i < N ; i++){ work(i); } TAU_PROFILE_STOP(t); }
62
The TAU Performance SystemNRL Monterey, CA Dec. 200362 Manual Instrumentation – F90 Example cc34567 Cubes program – comment line PROGRAM SUM_OF_CUBES integer profiler(2) save profiler INTEGER :: H, T, U call TAU_PROFILE_INIT() call TAU_PROFILE_TIMER(profiler, 'PROGRAM SUM_OF_CUBES') call TAU_PROFILE_START(profiler) call TAU_PROFILE_SET_NODE(0) ! This program prints all 3-digit numbers that ! equal the sum of the cubes of their digits. DO H = 1, 9 DO T = 0, 9 DO U = 0, 9 IF (100*H + 10*T + U == H**3 + T**3 + U**3) THEN PRINT "(3I1)", H, T, U ENDIF END DO call TAU_PROFILE_STOP(profiler) END PROGRAM SUM_OF_CUBES
63
The TAU Performance SystemNRL Monterey, CA Dec. 200363 Instrumenting Multithreaded Applications #include void * threaded_function(void *data) { TAU_REGISTER_THREAD(); // Before any other TAU calls TAU_PROFILE(“void * threaded_function”, “ ”, TAU_DEFAULT); work(); } int main(int argc, char **argv) { TAU_PROFILE(“int main(int, char **)”, “ ”, TAU_DEFAULT); TAU_PROFILE_INIT(argc, argv); TAU_PROFILE_SET_NODE(0); /* for sequential programs */ pthread_attr_t attr; pthread_t tid; pthread_attr_init(&attr); pthread_create(&tid, NULL, threaded_function, NULL); return 0; }
64
The TAU Performance SystemNRL Monterey, CA Dec. 200364 Compiling % configure [options] % make clean install Creates /lib/Makefile.tau stub Makefile and /lib/libTau.a [.so] libraries which defines a single configuration of TAU
65
The TAU Performance SystemNRL Monterey, CA Dec. 200365 Compiling: TAU Makefiles Include TAU Stub Makefile ( /lib) in the user’s Makefile. Variables: TAU_CXXSpecify the C++ compiler used by TAU TAU_CC, TAU_F90Specify the C, F90 compilers TAU_DEFSDefines used by TAU. Add to CFLAGS TAU_LDFLAGSLinker options. Add to LDFLAGS TAU_INCLUDEHeader files include path. Add to CFLAGS TAU_LIBSStatically linked TAU library. Add to LIBS TAU_SHLIBSDynamically linked TAU library TAU_MPI_LIBSTAU’s MPI wrapper library for C/C++ TAU_MPI_FLIBSTAU’s MPI wrapper library for F90 TAU_FORTRANLIBSMust be linked in with C++ linker for F90 TAU_CXXLIBSMust be linked in with F90 linker TAU_DISABLETAU’s dummy F90 stub library Note: Not including TAU_DEFS in CFLAGS disables instrumentation in C/C++ programs (TAU_DISABLE for f90).
66
The TAU Performance SystemNRL Monterey, CA Dec. 200366 Including TAU Makefile - Example include /usr/tau/sgi64/lib/Makefile.tau-pthread-kcc CXX = $(TAU_CXX) CC = $(TAU_CC) CFLAGS = $(TAU_DEFS) $(TAU_INCLUDE) LIBS = $(TAU_LIBS) OBJS =... TARGET= a.out TARGET: $(OBJS) $(CXX) $(LDFLAGS) $(OBJS) -o $@ $(LIBS).cpp.o: $(CC) $(CFLAGS) -c $< -o $@
67
The TAU Performance SystemNRL Monterey, CA Dec. 200367 Setup: Running Applications % set path=($path / /bin) % setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH\: / /lib For PAPI (1 counter): % setenv PAPI_EVENT PAPI_FP_INS For PAPI (multiplecounters): % setenv COUNTER1 PAPI_FP_INS (PAPI’s Floating point ins) % setenv COUNTER2 PAPI_L1_DCM (PAPI’s L1 Data cache misses) % setenv COUNTER3 P_VIRTUAL_TIME (PAPI’s virtual time) % setenv COUNTER4 LINUX_TIMERS (Wallclock time) % mpirun –np % llsubmit job.sh % paraprof (for performance analysis)
68
The TAU Performance SystemNRL Monterey, CA Dec. 200368 Using TAU – A tutorial Configuration Instrumentation Manual PDT- Source rewriting for C,C++, F77/90/95 MPI – Wrapper interposition library OpenMP – Directive rewriting Binary Instrumentation DyninstAPI – Runtime/Rewriting binary Java – Runtime instrumentation Python – Runtime instrumentation Measurement Performance Analysis
69
The TAU Performance SystemNRL Monterey, CA Dec. 200369 Using Program Database Toolkit (PDT) Step I: Configure PDT: % configure –arch=IRIX64 –CC % make clean; make install Builds / /bin/cxxparse, cparse, f90parse and f95parse Builds / /lib/libpdb.a. See /README file. Step II: Configure TAU with PDT for auto-instrumentation of source code: % configure –arch=sgi64 –c++=CC –cc=cc –pdt=/usr/contrib/TAU/pdtoolkit-3.0 % make clean; make install Builds / /bin/tau_instrumentor, / /lib/Makefile.tau and libTau.a See /INSTALL file.
70
The TAU Performance SystemNRL Monterey, CA Dec. 200370 TAU Makefile for PDT include /usr/tau/include/Makefile CXX = $(TAU_CXX) CC = $(TAU_CC) PDTPARSE = $(PDTDIR)/$(CONFIG_ARCH)/bin/cxxparse TAUINSTR = $(TAUROOT)/$(CONFIG_ARCH)/bin/tau_instrumentor CFLAGS = $(TAU_DEFS) $(TAU_INCLUDE) LIBS = $(TAU_LIBS) OBJS =... TARGET= a.out TARGET: $(OBJS) $(CXX) $(LDFLAGS) $(OBJS) -o $@ $(LIBS).cpp.o: $(PDTPARSE) $< $(TAUINSTR) $*.pdb $< -o $*.inst.cpp –f select.dat $(CC) $(CFLAGS) -c $*.inst.cpp -o $@
71
The TAU Performance SystemNRL Monterey, CA Dec. 200371 Instrumentation Control Selection of which performance events to observe Could depend on scope, type, level of interest Could depend on instrumentation overhead How is selection supported in instrumentation system? No choice Include / exclude routine and file lists (TAU) Environment variables Static vs. dynamic Problem: Controlling instrumentation of small routines High relative measurement overhead Significant intrusion and possible perturbation
72
The TAU Performance SystemNRL Monterey, CA Dec. 200372 Using PDT: tau_instrumentor % tau_instrumentor Usage : tau_instrumentor [-o ] [-noinline] [-g groupname] [-i headerfile] [-c|-c++|-fortran] [-f ] For selective instrumentation, use –f option % tau_instrumentor foo.pdb foo.cpp –o foo.inst.cpp –f selective.dat % cat selective.dat # Selective instrumentation: Specify an exclude/include list of routines/files. BEGIN_EXCLUDE_LIST void quicksort(int *, int, int) void sort_5elements(int *) void interchange(int *, int *) END_EXCLUDE_LIST BEGIN_FILE_INCLUDE_LIST Main.cpp Foo?.c *.C END_FILE_INCLUDE_LIST # Instruments routines in Main.cpp, Foo?.c and *.C files only # Use BEGIN_[FILE]_INCLUDE_LIST with END_[FILE]_INCLUDE_LIST
73
The TAU Performance SystemNRL Monterey, CA Dec. 200373 tau_reduce: Rule-Based Overhead Analysis Analyze the performance data to determine events with high (relative) overhead performance measurements Create a select list for excluding those events Rule grammar (used in tau_reduce tool) [GroupName:] Field Operator Number GroupName indicates rule applies to events in group Field is a event metric attribute (from profile statistics) numcalls, numsubs, percent, usec, cumusec, count [PAPI], totalcount, stdev, usecs/call, counts/call Operator is one of >, <, or = Number is any number Compound rules possible using & between simple rules
74
The TAU Performance SystemNRL Monterey, CA Dec. 200374 Example Rules #Exclude all events that are members of TAU_USER #and use less than 1000 microseconds TAU_USER:usec < 1000 #Exclude all events that have less than 100 #microseconds and are called only once usec < 1000 & numcalls = 1 #Exclude all events that have less than 1000 usecs per #call OR have a (total inclusive) percent less than 5 usecs/call < 1000 percent < 5 Scientific notation can be used usec>1000 & numcalls>400000 & usecs/call 25
75
The TAU Performance SystemNRL Monterey, CA Dec. 200375 TAU_REDUCE Reads profile files and rules Creates selective instrumentation file Specifies which routines should be excluded from instrumentation tau_reduce rules profile Selective instrumentation file
76
The TAU Performance SystemNRL Monterey, CA Dec. 200376 Using TAU – A tutorial Configuration Instrumentation Manual PDT- Source rewriting for C,C++, F77/90/95 MPI – Wrapper interposition library OpenMP – Directive rewriting Binary Instrumentation DyninstAPI – Runtime/Rewriting binary Java – Runtime instrumentation Python – Runtime instrumentation Measurement Performance Analysis
77
The TAU Performance SystemNRL Monterey, CA Dec. 200377 Using MPI Wrapper Interposition Library Step I: Configure TAU with MPI: % configure –mpiinc=/usr/include –mpilib=/usr/lib64 –arch=sgi64 –c++=CC –cc=cc –pdt=/usr/contrib/TAU/pdtoolkit-3.0 % make clean; make install Builds / /lib/libTauMpi, / /lib/Makefile.tau and libTau.a
78
The TAU Performance SystemNRL Monterey, CA Dec. 200378 TAU’s MPI Wrapper Interposition Library Uses standard MPI Profiling Interface Provides name shifted interface MPI_Send = PMPI_Send Weak bindings Interpose TAU’s MPI wrapper library between MPI and TAU -lmpi replaced by –lTauMpi –lpmpi –lmpi
79
The TAU Performance SystemNRL Monterey, CA Dec. 200379 MPI Library Instrumentation (MPI_Send) int MPI_Send(…) /* TAU redefines MPI_Send */... { int returnVal, typesize; TAU_PROFILE_TIMER(tautimer, "MPI_Send()", " ", TAU_MESSAGE); TAU_PROFILE_START(tautimer); if (dest != MPI_PROC_NULL) { PMPI_Type_size(datatype, &typesize); TAU_TRACE_SENDMSG(tag, dest, typesize*count); } /* Wrapper calls PMPI_Send */ returnVal = PMPI_Send(buf, count, datatype, dest, tag, comm); TAU_PROFILE_STOP(tautimer); return returnVal; }
80
The TAU Performance SystemNRL Monterey, CA Dec. 200380 Including TAU’s stub Makefile include /usr/tau/sgi64/lib/Makefile.tau-mpi CXX = $(TAU_CXX) CC = $(TAU_CC) CFLAGS = $(TAU_DEFS) $(TAU_INCLUDE) $(TAU_MPI_INCLUDE) LIBS = $(TAU_MPI_LIBS) $(TAU_LIBS) LD_FLAGS = $(TAU_LDFLAGS) OBJS =... TARGET= a.out TARGET: $(OBJS) $(CXX) $(LDFLAGS) $(OBJS) -o $@ $(LIBS).cpp.o: $(CC) $(CFLAGS) -c $< -o $@
81
The TAU Performance SystemNRL Monterey, CA Dec. 200381 Using TAU – A tutorial Configuration Instrumentation Manual PDT- Source rewriting for C,C++, F77/90/95 MPI – Wrapper interposition library OpenMP – Directive rewriting Binary Instrumentation DyninstAPI – Runtime/Rewriting binary Java – Runtime instrumentation Python – Runtime instrumentation Measurement Performance Analysis
82
The TAU Performance SystemNRL Monterey, CA Dec. 200382 Using Opari with TAU Step I: Configure KOJAK/opari [Download from http://www.fz-juelich.de/zam/kojak/] % cd kojak-0.99; cp mf/Makefile.defs.sgi Makefile.defs; edit Makefile % make Builds opari Step II: Configure TAU with Opari (used here with MPI and PDT) % configure –opari=/usr/contrib/TAU/kojak-0.99/opari -mpiinc=/usr/include –mpilib=/usr/lib64 –arch=sgi64 –c++=CC –cc=cc –pdt=/usr/contrib/TAU/pdtoolkit-3.0 % make clean; make install
83
The TAU Performance SystemNRL Monterey, CA Dec. 200383 Instrumentation of OpenMP Constructs OPARI OpenMP Pragma And Region Instrumentor Source-to-Source translator to insert POMP calls around OpenMP constructs and API functions Done: Supports Fortran77 and Fortran90, OpenMP 2.0 C and C++, OpenMP 1.0 POMP Extensions EPILOG and TAU POMP implementations Preserves source code information ( #line line file ) Work in Progress: Investigating standardization through OpenMP Forum
84
The TAU Performance SystemNRL Monterey, CA Dec. 200384 OpenMP API Instrumentation Transform omp_#_lock() pomp_#_lock() omp_#_nest_lock() pomp_#_nest_lock() [ # = init | destroy | set | unset | test ] POMP version Calls omp version internally Can do extra stuff before and after call
85
The TAU Performance SystemNRL Monterey, CA Dec. 200385 Example: !$OMP PARALLEL DO Instrumentation !$OMP PARALLEL DO clauses... do loop !$OMP END PARALLEL DO !$OMP PARALLEL other-clauses... !$OMP DO schedule-clauses, ordered-clauses, lastprivate-clauses do loop !$OMP END DO !$OMP END PARALLEL DO NOWAIT !$OMP BARRIER call pomp_parallel_fork(d) call pomp_parallel_begin(d) call pomp_parallel_end(d) call pomp_parallel_join(d) call pomp_do_enter(d) call pomp_do_exit(d) call pomp_barrier_enter(d) call pomp_barrier_exit(d)
86
The TAU Performance SystemNRL Monterey, CA Dec. 200386 Opari Instrumentation: Example OpenMP directive instrumentation pomp_for_enter(&omp_rd_2); #line 252 "stommel.c" #pragma omp for schedule(static) reduction(+: diff) private(j) firstprivate (a1,a2,a3,a4,a5) nowait for( i=i1;i<=i2;i++) { for(j=j1;j<=j2;j++){ new_psi[i][j]=a1*psi[i+1][j] + a2*psi[i-1][j] + a3*psi[i][j+1] + a4*psi[i][j-1] - a5*the_for[i][j]; diff=diff+fabs(new_psi[i][j]-psi[i][j]); } pomp_barrier_enter(&omp_rd_2); #pragma omp barrier pomp_barrier_exit(&omp_rd_2); pomp_for_exit(&omp_rd_2); #line 261 "stommel.c"
87
The TAU Performance SystemNRL Monterey, CA Dec. 200387 OPARI: Basic Usage (f90) Reset OPARI state information rm -f opari.rc Call OPARI for each input source file opari file1.f90... opari fileN.f90 Generate OPARI runtime table, compile it with ANSI C opari -table opari.tab.c cc -c opari.tab.c Compile modified files *.mod.f90 using OpenMP Link the resulting object files, the OPARI runtime table opari.tab.o and the TAU POMP RTL
88
The TAU Performance SystemNRL Monterey, CA Dec. 200388 OPARI: Makefile Template (C/C++) OMPCC =...# insert C OpenMP compiler here OMPCXX =...# insert C++ OpenMP compiler here.c.o: opari $< $(OMPCC) $(CFLAGS) -c $*.mod.c.cc.o: opari $< $(OMPCXX) $(CXXFLAGS) -c $*.mod.cc opari.init: rm -rf opari.rc opari.tab.o: opari -table opari.tab.c $(CC) -c opari.tab.c myprog: opari.init myfile*.o... opari.tab.o $(OMPCC) -o myprog myfile*.o opari.tab.o -lpomp myfile1.o: myfile1.c myheader.h myfile2.o:...
89
The TAU Performance SystemNRL Monterey, CA Dec. 200389 OPARI: Makefile Template (Fortran) OMPF77 =...# insert f77 OpenMP compiler here OMPF90 =...# insert f90 OpenMP compiler here.f.o: opari $< $(OMPF77) $(CFLAGS) -c $*.mod.F.f90.o: opari $< $(OMPF90) $(CXXFLAGS) -c $*.mod.F90 opari.init: rm -rf opari.rc opari.tab.o: opari -table opari.tab.c $(CC) -c opari.tab.c myprog: opari.init myfile*.o... opari.tab.o $(OMPF90) -o myprog myfile*.o opari.tab.o -lpomp myfile1.o: myfile1.f90 myfile2.o:...
90
The TAU Performance SystemNRL Monterey, CA Dec. 200390 Tracing Hybrid Executions – TAU and Vampir
91
The TAU Performance SystemNRL Monterey, CA Dec. 200391 Profiling Hybrid Executions
92
The TAU Performance SystemNRL Monterey, CA Dec. 200392 OpenMP + MPI Ocean Modeling (HW Profile) % configure -papi=../packages/papi -openmp -c++=pgCC -cc=pgcc -mpiinc=../packages/mpich/include -mpilib=../packages/mpich/lib FP instructions Integrated OpenMP + MPI events
93
The TAU Performance SystemNRL Monterey, CA Dec. 200393 Using TAU – A tutorial Configuration Instrumentation Manual PDT- Source rewriting for C,C++, F77/90/95 MPI – Wrapper interposition library OpenMP – Directive rewriting Binary Instrumentation DyninstAPI – Runtime/Rewriting binary Java – Runtime instrumentation Python – Runtime instrumentation Measurement Performance Analysis
94
The TAU Performance SystemNRL Monterey, CA Dec. 200394 Dynamic Instrumentation TAU uses DyninstAPI for runtime code patching tau_run (mutator) loads measurement library Instruments mutatee MPI issues: one mutator per executable image [TAU, DynaProf] one mutator for several executables [Paradyn, DPCL]
95
The TAU Performance SystemNRL Monterey, CA Dec. 200395 Using DyninstAPI with TAU Step I: Install DyninstAPI[Download from http://www.dyninst.org] % cd dyninstAPI-4.0.2/core; make Set DyninstAPI environment variables (including LD_LIBRARY_PATH) Step II: Configure TAU with Dyninst % configure –dyninst=/usr/local/dyninstAPI-4.0.2 % make clean; make install Builds / /bin/tau_run % tau_run [ ] [-Xrun ] [-f ] [-v] % tau_run –o a.inst.out a.out Rewrites a.out % tau_run klargest Instruments klargest with TAU calls and executes it % tau_run -XrunTAUsh-papi a.out Loads libTAUsh-papi.so instead of libTAU.so for measurements NOTE: All compilers and platforms are not yet supported (work in progress)
96
The TAU Performance SystemNRL Monterey, CA Dec. 200396 SIMPLE Hydrodynamics Benchmark
97
The TAU Performance SystemNRL Monterey, CA Dec. 200397 Using TAU – A tutorial Configuration Instrumentation Manual PDT- Source rewriting for C,C++, F77/90/95 MPI – Wrapper interposition library OpenMP – Directive rewriting Binary Instrumentation DyninstAPI – Runtime/Rewriting binary Java – Runtime instrumentation Python – Runtime instrumentation Measurement Performance Analysis
98
The TAU Performance SystemNRL Monterey, CA Dec. 200398 Multi-Threading Performance Measurement General issues Thread identity and per-thread data storage Performance measurement support and synchronization Fine-grained parallelism different forms and levels of threading greater need for efficient instrumentation TAU general threading and measurement model Common thread layer and measurement support Interface to system specific libraries (reg, id, sync) Target different thread systems with core functionality Pthreads, Windows, Java, SMARTS, Tulip, OpenMP
99
The TAU Performance SystemNRL Monterey, CA Dec. 200399 Virtual Machine Performance Instrumentation Integrate performance system with VM Captures robust performance data (e.g., thread events) Maintain features of environment portability, concurrency, extensibility, interoperation Allow use in optimization methods JVM Profiling Interface (JVMPI) Generation of JVM events and hooks into JVM Profiler agent (TAU) loaded as shared object registers events of interest and address of callback routine Access to information on dynamically loaded classes No need to modify Java source, bytecode, or JVM
100
The TAU Performance SystemNRL Monterey, CA Dec. 2003100 Using TAU with Java Applications Step I: Sun JDK 1.2+ [download from www.javasoft.com] Step II: Configure TAU with JDK (v 1.2 or better) % configure –jdk=/usr/java2 –TRACE -PROFILE % make clean; make install Builds / /lib/libTAU.so For Java (without instrumentation): % java application With instrumentation: % java -XrunTAU application % java -XrunTAU:exclude=sun/io,java application Excludes sun/io/* and java/* classes
101
The TAU Performance SystemNRL Monterey, CA Dec. 2003101 TAU Profiling of Java Application (SciVis) Profile for each Java thread Captures events for different Java packages 24 threads of execution! global routine profile
102
The TAU Performance SystemNRL Monterey, CA Dec. 2003102 TAU Tracing of Java Application (SciVis) Performance groups Timeline display Parallelism view
103
The TAU Performance SystemNRL Monterey, CA Dec. 2003103 Vampir Dynamic Call Tree View (SciVis) Per thread call tree Annotated performance Expanded call tree
104
The TAU Performance SystemNRL Monterey, CA Dec. 2003104 Using TAU – A tutorial Configuration Instrumentation Manual PDT- Source rewriting for C,C++, F77/90/95 MPI – Wrapper interposition library OpenMP – Directive rewriting Binary Instrumentation DyninstAPI – Runtime/Rewriting binary Java – Runtime instrumentation Python – Runtime instrumentation Measurement Performance Analysis
105
The TAU Performance SystemNRL Monterey, CA Dec. 2003105 Using TAU with Python Applications Step I: Configure TAU with Python % configure –pythoninc=/usr/include/python2.2/include % make clean; make install Builds / /lib/ /pytau.py and tau.py packages for manual and automatic instrumentation respectively % setenv PYTHONPATH $PYTHONPATH\: / /lib/[ ]
106
The TAU Performance SystemNRL Monterey, CA Dec. 2003106 Python Manual Instrumentation Example #!/usr/bin/env/python import pytau From time import sleep x = pytau.profileTimer(``Timer A’’) pytau.start(x) print “ Sleeping for 5 seconds ” sleep(5) pytau.stop(x) Running: % setenv PYTHONPATH / /lib %./application.py
107
The TAU Performance SystemNRL Monterey, CA Dec. 2003107 Python Automatic Instrumentation Example #!/usr/bin/env/python import tau from time import sleep def f2(): print “ In f2: Sleeping for 2 seconds ” sleep(2) def f1(): print “ In f1: Sleeping for 3 seconds ” sleep(3) def OurMain(): f1() tau.run(‘OurMain()’) Running: % setenv PYTHONPATH / /lib %./auto.py Instruments OurMain, f1, f2, print…
108
The TAU Performance SystemNRL Monterey, CA Dec. 2003108 Using TAU – A tutorial Configuration Instrumentation Manual PDT- Source rewriting for C,C++, F77/90/95 MPI – Wrapper interposition library OpenMP – Directive rewriting Binary Instrumentation DyninstAPI – Runtime/Rewriting binary Java – Runtime instrumentation Python – Runtime instrumentation Measurement Performance Analysis
109
The TAU Performance SystemNRL Monterey, CA Dec. 2003109 TAU Measurement Performance information High-resolution timer library (real-time / virtual clocks) General software counter library (user-defined events) Hardware performance counters PAPI (Performance API) (UTK, Ptools Consortium) consistent, portable API one event or multiple counters Organization Node, context, thread levels Profile groups for collective events (runtime selective) Performance data mapping between software levels
110
The TAU Performance SystemNRL Monterey, CA Dec. 2003110 TAU Measurement (continued) Parallel profiling Function-level, block-level, statement-level Supports user-defined events TAU parallel profile database Call path profiles Hardware counts values (in replace of time) Tracing All profile-level events Interprocess communication events User-configurable measurement library (user controlled)
111
The TAU Performance SystemNRL Monterey, CA Dec. 2003111 Setup: Running Applications % setenv PROFILEDIR /home/data/experiments/profile/01 % setenv TRACEDIR/home/data/experiments/trace/01(optional) % set path=($path / /bin) % setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH\: / /lib For PAPI (1 counter): % setenv PAPI_EVENT PAPI_FP_INS For PAPI (multiplecounters): % setenv COUNTER1 PAPI_FP_INS (PAPI’s Floating point ins) % setenv COUNTER2 PAPI_L1_DCM (PAPI’s L1 Data cache misses) % setenv COUNTER3 P_VIRTUAL_TIME (PAPI’s virtual time) % setenv COUNTER4 LINUX_TIMERS (Wallclock time) % mpirun –np % llsubmit job.sh For Callpath Profiling: % setenv TAU_CALLPATH_DEPTH 10
112
The TAU Performance SystemNRL Monterey, CA Dec. 2003112 Performance Mapping Associate performance with “significant” entities (events) Source code points are important Functions, regions, control flow events, user events Execution process and thread entities are important Some entities are more abstract, harder to measure Consider callgraph (callpath) profiling Measure time (metric) along an edge (path) of callgraph Incident edge gives parent / child view Edge sequence (path) gives parent / descendant view Problem: Callpath profiling when callgraph is unknown Determine callgraph dynamically at runtime Map performance measurement to dynamic call path state
113
The TAU Performance SystemNRL Monterey, CA Dec. 2003113 A B C D HG FE I Callgraph (Callpath) Profiling Measure time (metric) along an edge (path) of callgraph Incident edge gives parent / child view Edge sequence (path) gives parent / descendant view 1-level callpath Immediate descendant A B, E I, D H C H ? k-level callpath k call descendant 2-level: A D, C I 2-level: A I ? 3-level: A H
114
The TAU Performance SystemNRL Monterey, CA Dec. 2003114 k-Level Callpath Implementation in TAU TAU maintains a performance event (routine) callstack Profiled routine (child) looks in callstack for parent Previous profiled performance event is the parent A callpath profile structure created first time parent calls TAU records parent in a callgraph map for child String representing k-level callpath used as its key “a( )=>b( )=>c()” : name for time spent in “c” when called by “b” when “b” is called by “a” Map returns pointer to callpath profile structure k-level callpath is profiled using this profiling data Set environment variable TAU_CALLPATH_DEPTH to depth Build upon TAU’s performance mapping technology Measurement is independent of instrumentation Use –PROFILECALLPATH to configure TAU
115
The TAU Performance SystemNRL Monterey, CA Dec. 2003115 k-Level Callpath Implementation in TAU
116
The TAU Performance SystemNRL Monterey, CA Dec. 2003116 Using TAU with Vampir Configure TAU with -TRACE option % configure –TRACE –SGITIMERS … Execute application % mpirun –np 4 a.out This generates TAU traces and event descriptors Merge all traces using tau_merge % tau_merge *.trc app.trc Convert traces to Vampir Trace format using tau_convert % tau_convert –pv app.trc tau.edf app.pv Note: Use –vampir instead of –pv for multi-threaded traces Load generated trace file in Vampir % vampir app.pv
117
The TAU Performance SystemNRL Monterey, CA Dec. 2003117 Case Study: Utah ASCI/ASAP Level 1 Center C-SAFE was established at U. Utah to build a problem- solving environment (PSE) for the numerical simulation of accidental fires and explosions Fundamental chemistry and engineering physics models Coupled with non-linear solvers, optimization, computational steering, visualization, and experimental data verification Very large-scale simulations Computer science problems: Coupling of multiple simulation codes Software engineering across diverse expert teams Achieving high performance on large-scale systems
118
The TAU Performance SystemNRL Monterey, CA Dec. 2003118 Example C-SAFE Simulation Problems ∑ Heptane fire simulation Material stress simulation Typical C-SAFE simulation with a billion degrees of freedom and non-linear time dynamics
119
The TAU Performance SystemNRL Monterey, CA Dec. 2003119 Uintah High-Level Component View
120
The TAU Performance SystemNRL Monterey, CA Dec. 2003120 Uintah Computational Framework Execution model based on software (macro) dataflow Exposes parallelism and hides data transport latency Computations expressed a directed acyclic graphs of tasks consumes input and produces output (input to future task) input/outputs specified for each patch in a structured grid Abstraction of global single-assignment memory DataWarehouse Directory mapping names to values (array structured) Write value once then communicate to awaiting tasks Task graph gets mapped to processing resources Communications schedule approximates global optimal
121
The TAU Performance SystemNRL Monterey, CA Dec. 2003121 Uintah Task Graph (Material Point Method) Diagram of named tasks (ovals) and data (edges) Imminent computation Dataflow-constrained MPM Newtonian material point motion time step Solid: values defined at material point (particle) Dashed: values defined at vertex (grid) Prime (‘): values updated during time step
122
The TAU Performance SystemNRL Monterey, CA Dec. 2003122 Uintah PSE UCF automatically sets up: Domain decomposition Inter-processor communication with aggregation/reduction Parallel I/O Checkpoint and restart Performance measurement and analysis (stay tuned) Software engineering Coding standards CVS (Commits: Y3 - 26.6 files/day, Y4 - 29.9 files/day) Correctness regression testing with bugzilla bug tracking Nightly build (parallel compiles) 170,000 lines of code (Fortran and C++ tasks supported)
123
The TAU Performance SystemNRL Monterey, CA Dec. 2003123 Performance Technology Integration Uintah present challenges to performance integration Software diversity and structure UCF middleware, simulation code modules component-based hierarchy Portability objectives cross-language and cross-platform multi-parallelism: thread, message passing, mixed Scalability objectives High-level programming and execution abstractions Requires flexible and robust performance technology Requires support for performance mapping
124
The TAU Performance SystemNRL Monterey, CA Dec. 2003124 Task execution time dominates (what task?) MPI communication overheads (where?) Task Execution in Uintah Parallel Scheduler Profile methods and functions in scheduler and in MPI library Task execution time distribution Need to map performance data!
125
The TAU Performance SystemNRL Monterey, CA Dec. 2003125 Semantics-Based Performance Mapping Associate performance measurements with high-level semantic abstractions Need mapping support in the performance measurement system to assign data correctly
126
The TAU Performance SystemNRL Monterey, CA Dec. 2003126 Semantic Entities/Attributes/Associations (SEAA) New dynamic mapping scheme Entities defined at any level of abstraction Attribute entity with semantic information Entity-to-entity associations Two association types (implemented in TAU API) Embedded – extends data structure of associated object to store performance measurement entity External – creates an external look-up table using address of object as the key to locate performance measurement entity
127
The TAU Performance SystemNRL Monterey, CA Dec. 2003127 Uintah Task Performance Mapping Uintah partitions individual particles across processing elements (processes or threads) Simulation tasks in task graph work on particles Tasks have domain-specific character in the computation “interpolate particles to grid” in Material Point Method Task instances generated for each partitioned particle set Execution scheduled with respect to task dependencies How to attributed execution time among different tasks Assign semantic name (task type) to a task instance SerialMPM::interpolateParticleToGrid Map TAU timer object to (abstract) task (semantic entity) Look up timer object using task type (semantic attribute) Further partition along different domain-specific axes
128
The TAU Performance SystemNRL Monterey, CA Dec. 2003128 Using External Associations Two level mappings: Level 1: Level 2: Embedded association vs External association Data (object) Performance Data... Hash Table
129
The TAU Performance SystemNRL Monterey, CA Dec. 2003129 Task Performance Mapping Instrumentation void MPIScheduler::execute(const ProcessorGroup * pc, DataWarehouseP & old_dw, DataWarehouseP & dw ) {... TAU_MAPPING_CREATE( task->getName(), "[MPIScheduler::execute()]", (TauGroup_t)(void*)task->getName(), task->getName(), 0);... TAU_MAPPING_OBJECT(tautimer) TAU_MAPPING_LINK(tautimer,(TauGroup_t)(void*)task->getName()); // EXTERNAL ASSOCIATION... TAU_MAPPING_PROFILE_TIMER(doitprofiler, tautimer, 0) TAU_MAPPING_PROFILE_START(doitprofiler,0); task->doit(pc); TAU_MAPPING_PROFILE_STOP(0);... }
130
The TAU Performance SystemNRL Monterey, CA Dec. 2003130 Task Performance Mapping (Profile) Performance mapping for different tasks Mapped task performance across processes
131
The TAU Performance SystemNRL Monterey, CA Dec. 2003131 Task Performance Mapping (Trace) Work packet computation events colored by task type Distinct phases of computation can be identifed based on task
132
The TAU Performance SystemNRL Monterey, CA Dec. 2003132 Task Performance Mapping (Trace - Zoom) Startup communication imbalance
133
The TAU Performance SystemNRL Monterey, CA Dec. 2003133 Task Performance Mapping (Trace - Parallelism) Communication / load imbalance
134
The TAU Performance SystemNRL Monterey, CA Dec. 2003134 Comparing Uintah Traces for Scalability Analysis 8 processes 32 processes
135
The TAU Performance SystemNRL Monterey, CA Dec. 2003135 Scaling Performance Optimizations Last year: initial “correct” scheduler Reduce communication by 10 x Reduce task graph overhead by 20 x ASCI Nirvana SGI Origin 2000 Los Alamos National Laboratory
136
The TAU Performance SystemNRL Monterey, CA Dec. 2003136 Scalability to 2000 Processors (Fall 2001) ASCI Nirvana SGI Origin 2000 Los Alamos National Laboratory
137
The TAU Performance SystemNRL Monterey, CA Dec. 2003137 Concluding Remarks Complex software and parallel computing systems pose challenging performance analysis problems that require robust methodologies and tools To build more sophisticated performance tools, existing proven performance technology must be utilized Performance tools must be integrated with software and systems models and technology Performance engineered software Function consistently and coherently in software and system environments PAPI and TAU performance systems offer robust performance technology that can be broadly integrated
138
The TAU Performance SystemNRL Monterey, CA Dec. 2003138 Support Acknowledgements Department of Energy (DOE) Office of Science contracts University of Utah DOE ASCI Level 1 sub-contract DOE ASCI Level 3 (LANL, LLNL) NSF National Young Investigator (NYI) award Research Centre Juelich John von Neumann Institute for Computing Dr. Bernd Mohr Los Alamos National Laboratory
139
The TAU Performance SystemNRL Monterey, CA Dec. 2003139 Setup for Training Session SSH: Go to Edit->Properties-> Tunnelling and check Tunnel X11 connections Login to daley.nrlmry.navy.mil Try % xclock &
140
The TAU Performance SystemNRL Monterey, CA Dec. 2003140 Training Session % cp –r /usr/contrib/TAU/tau-2.13 % set path=(/usr/java2/bin $path) % set path=($path /usr/contrib/TAU/tau- 2.13/sgi64/bin) % setenv PAL_ROOT /usr/contrib/TAU/vampir-4.0 % set path=($path $PAL_ROOT/bin) % cd /tau-2.13 % configure –arch=sgi64 –mpiinc=/usr/include –mpilib=/usr/lib64 % make clean install; cd examples/NPB2.3 % gmake clean; gmake; cd bin; % mpirun –np 4 sp.W.4; paraprof % set path=($path /usr/contrib/TAU/pdtoolkit- 3.0/sgi64/bin)
141
The TAU Performance SystemNRL Monterey, CA Dec. 2003141 Using TAU+PAPI+PDT+MPI for F90 This will run your job in the queue: ~campbell/com/runsmpi % cd / % ls /usr/contrib/TAU/tau-2.13/sgi64/lib/Makefile.* For the F90+MPI example, you want: Makefile.tau- papiwallclock-multiplecounters-papivirtual-mpi-papi-pdt To see data in textual format: % pprof | more To see data in paraprof: % paraprof
142
The TAU Performance SystemNRL Monterey, CA Dec. 2003142 Using TAU with VAMPIR In your.cshrc file: setenv PAL_ROOT /usr/contrib/TAU/vampir-4.0 set path=($path $PAL_ROOT/bin) Select /usr/contrib/TAU/tau-2.13/sgi64/Makefile.tau- mpi-pdt-trace as your stub makefile Run your application (e.g., examples/mpi_pdt/f90).TAU produces *.edf *.trc files Merge and convert the trace files: % tau_merge tautrace*.trc app.trc % tau_convert -pv app.trc tau.edf app.pv % vampir app.pv See Global displays -> Timeline, Zoom in/out of segments.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.