Download presentation
Presentation is loading. Please wait.
1
A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb
2
A. Bay LPHE EPF Lausanne2 CP & T violation only in K 0 system ??? Since 1964, CP and or T violation was searched for in other systems than K 0, other particles decays, EDM... No other signal until 2001...
3
A. Bay LPHE EPF Lausanne3 production of (4s) (10.58GeV/c 2 ) = 0.425 (4s) B 0 B 0 B + B BaBar (SLAC) and Belle (KEK) in 2001: observation of CP violation in the B meson system, using "asymmetric collider" B factories. KEKB machine: 8 GeV electrons 3.5GeV positron
4
A. Bay LPHE EPF Lausanne4 KEKB 24% Y(4s) 76% continuum year 2003: crossing the (psychological) luminosity barrier of 10 34 cm -2 s -1 1.5807 10 34 on 18-May-2005
5
A. Bay LPHE EPF Lausanne5 Peak luminosity cm s Luminosity trend in the last 30 years
6
A. Bay LPHE EPF Lausanne6 BaBar and Belle Study of the time dependent asymmetry in decay rates of B 0 and anti-B 0 m = mass difference of "mass eigenstates" ~ 0.49 10 12 /s CP violated S ≠ 0
7
A. Bay LPHE EPF Lausanne7 CP measurements at B factories Difficult: B 0 mean life 1.54 10 s. Lorentz boost very small. B factories are asymmetric: the c.m. is moving. The two B decay at different position ~ on the z axis. We measure de difference z of the 2 vertices. r is small. Δz cβγΔt ~ 200 m at Belle (4s) z z1z1 z2z2 zz J/ Ks e D rr
8
A. Bay LPHE EPF Lausanne8 CP measurements at B factories (4s) z z1z1 z2z2 zz J/ Ks f CP B 0 and anti-B 0 oscillate coherently (QM entangled state). When the first decays, the other is known to be of the opposite flavour use the other side to infer the flavour, B 0 or anti-B 0, of the f CP parent e D region of B 0 & B 0 coherent evolution
9
A. Bay LPHE EPF Lausanne9 Belle experiment Central Drift Chamber He/C 2 H 5 ( Pt/Pt) 2 =(0.0019 Pt) 2 +(0.0030) 2 CsI(Tl) 16X 0 E/E ~ 1.8% @1GeV Aerogel Cherenkov n=1.015~1.030 Si Vertex detector 3 layers mid 2003 now 4 layers Impact parameter resolution 55 m for p=1GeV/c TOF counter SC solenoid 1.5T 8GeV e 3.5GeV e Started in 1999 ~300 physicists from ~60 institutes in 14 countries. / K L detection 14/15 layers of RPC+Fe : efficiency > 90% 1GeV/c Particle ID : dE/dx in CDC dE/dx =6.9% TOF TOF = 95ps Aerogel Cerenkov ACC Efficiency = ~90%, Fake rate = ~6% 3.5GeV/c
10
A. Bay LPHE EPF Lausanne10 BelleBelle ACC Silicon Vertex Detector SVD Impact parameter resolution 55 m for p=1GeV/c at normal incidence Central Drift Chamber CDC ( Pt/Pt) 2 = (0.0019 Pt) 2 + (0.0030) 2 K/ separation : dE/dx in CDC dE/dx =6.9% TOF TOF = 95ps Aerogel Cerenkov ACC Efficiency = ~90%, Fake rate = ~6% 3.5GeV/c , e : CsI crystals ECL E/E ~ 1.8% @ E=1GeV e : efficiency > 90% ~0.3% fake for p > 1GeV/c KL and : KLM (RPC) : efficiency > 90% 1GeV/c ~ 8 m 400 fb 4 10 8 B pairs
11
A. Bay LPHE EPF Lausanne11 spatial resolution for B lepton + X z (lepton) ~ 100 m Belle micro-vertex detector
12
A. Bay LPHE EPF Lausanne12 Belle event
13
A. Bay LPHE EPF Lausanne13 Particle ID in Belle Particle ID uses information from ACC, TOF, dE/dx( CDC) Barrel ACC Endcap ACC dE/dx TOF p (GeV/c) cut
14
A. Bay LPHE EPF Lausanne14 Experimental program: measure sides and angles of the CKM matrix * CP violated in the SM => the area of triangle 0 * Any inconsistency could be a signal of the existence of phenomena not included in the SM ~V ub ~V td ~V cb Use B mesons phenomenology t quark oscillations CP asymmetries b quark decays
15
A. Bay LPHE EPF Lausanne15 Analysis and results Continuum rejection Kinematics at the Y(4s) The Unitary triangle: determination of Vub " Vcb " Vtd " " " No time for other topics ~V ub ~V td ~V cb
16
A. Bay LPHE EPF Lausanne16 Continuum rejection 24% Y(4s) 76% continuum from event topology which is ~spherical for BB, jet like for continuum and angular distributions BB qq Build Likelihood L for B and qq hypothesis using event shape variables and cos B 0 0.2 0.4 0.6 0.8 1 cut
17
A. Bay LPHE EPF Lausanne17 How to find a B meson? Kinematics variables at the Y(4S) M bc 5.2 5.24 5.28 GeV/c 2 0 EE 0.2 0.2 GeV/c 2 Gather candidates B and calculate (p B,E B ). Boost to c.m. (p B *,E B * ) "beam constrained mass" Example: B D 0 with
18
A. Bay LPHE EPF Lausanne18 Determination of Vcb WW b c Vcb World Average: |Vcb| (inclusive) (42.0 0.6 0.8) 10 -3 |Vcb| (exclusive) (40.2 +2.1 ) 10 -3 -1.8 (Moriond excl. D*: CLEO: 46.9 10 -3 BABAR: 48.2 10 -3 ) D0D0 g(y) known function of y d D* + B0B0 q F(y) hadronic form factor plus ~5% error on F(1)
19
A. Bay LPHE EPF Lausanne19 Determination of Vub W b u Vub bcbc bubu 0 1 2 3 GeV/c Lepton momentum (in c.m.) Exemple: use lepton momentum distribution from inclusive semileptonic decays Less than 10% of the spectrum background free hep-ex/0305037, with reconstruction |Vub| (10 -3 ) = 3.96 0.17(stat) 0.44(syst) 0.29(theo) 0.34(b c) 0.26(b u) Average(inclusive) Vub=(4.12±0.13±0.60)10 -3
20
A. Bay LPHE EPF Lausanne20 Determination of Vtd B0B0 B0B0 t d b t W W b d Vtd 0 3 6 9 ps Probability 1 B0B0 B0B0 Starting from a pure sample of B 0, for instance, a B 0 component builds up in a time scale of a few ps: measure oscillation frequency
21
A. Bay LPHE EPF Lausanne21 region of B 0 & B 0 coherent evolution m d with di-lepton events * KEK-B boost cβγ ~ 200 m (4s) z z1z1 z2z2 zz e+e+ * Tag B flavour from semileptonic B 0 X l B 0 X l X Y * B 0 and B 0 oscillate coherently (QM entangled state). When the first decays, the other is known to be of the opposite flavour. t ~ z/c
22
A. Bay LPHE EPF Lausanne22 m d from di-lepton events.2 -12 -8 -4 0 GeV 2 N Missing mass Background: B + X l B X l Selection strategy of the "soft pion tag" B 0 D* l Br 3% D 0 Br 70% Event selection: - 1 st lepton P*> 1.8 GeV - 1 pion of opposite sign P* < 1 GeV - 2 nd lepton P*> 1.3 GeV - cut on M 2 (Frederic Ronga, PhD thesis, 2003)
23
A. Bay LPHE EPF Lausanne23 m d from di-lepton events.3 Get z distributions for "Same Sign" and "Opposite Sign" leptons couples and fit for m d... OS SS J/ l + l to infer resolution -2 -1 0 1 2 z (mm) SS -2 -1 0 1 2 z (mm) OS 0 1 2 z (mm)
24
A. Bay LPHE EPF Lausanne24 F. Ronga average m d and Vtd HEP-PH/0206171 Bag parameter B decay constant |V td | ~ (8±2)10 -3 ~20% error ! {
25
A. Bay LPHE EPF Lausanne25 UT sides The Unitary Triangle inferred from its sides and from K 0 data Vub/Vcb From K 0 m d & m s 1 0 Excluded area has <0.05 CL
26
A. Bay LPHE EPF Lausanne26 from B 0 J/ Ks b d B0B0 Vcb c c s KsKs J/ d B0B0 Vcb c s KsKs J/ Vt d Vtb VtdVtb c b Interference between the 2 amplitudes gives a "time-dependent CPV" CKM phase 0 ! CKM phase = 0 sin2 } SM: B0B0 d Golden Channel
27
A. Bay LPHE EPF Lausanne27 Any "direct" CP violation ? b d B0B0 Vcb c c s KsKs J/ d B0B0 Vtbc KsKs J/ c b s No "direct CPV" expected in SM in B J/ Ks, but who knows ?... CKM phase = 0 t Vts sin2 } SM: } 0
28
A. Bay LPHE EPF Lausanne28 Time dependent asymmetry measurement (4s) z z1z1 z2z2 zz J/ Ks f CP e D region of B 0 & B 0 coherent evolution Need to "tag" the flavour: B 0 or B 0. B 0 and B 0 oscillate coherently (QM entangled state) use the other side to infer the flavour t ~ z / c f tag
29
A. Bay LPHE EPF Lausanne29 b ccs reconstruction 140 fb 1, 152M BB pairs B 0 J/ K L b ccs (J/ K L excluded) 5417 events are used in the fit. p B GeV/c
30
A. Bay LPHE EPF Lausanne30 A large CP asymmetry has been observed! World average (October 2005): S CP = 0.726 ± 0.037 J/ K L A CP ~ 0, compatible with no direct CPV SM: S CP = sin(2 ) => or 66.3°) J/ K L is OK
31
A. Bay LPHE EPF Lausanne31 SM & KM model is verified ! = 23.7°± 2.1° = 66.3°± 2.1°
32
A. Bay LPHE EPF Lausanne32 UT with sin2 The Unitary Triangle fit including sides, K 0 data, and sin2
33
A. Bay LPHE EPF Lausanne33 b sss, a B 0 Ks puzzle ? b to s transition is second order (gluonic penguin). Prediction from SM: ~ same value of sin(2 ) as in ccs because no additional phase from the loop. V ts V tb * B0B0 b d s s d Ks s W t ??? B0B0 b d s s d s squark unless new physics enters the loop. For instance:
34
A. Bay LPHE EPF Lausanne34 B 0 Ks.2 68 11 signals 106 candidates in the fit purity = 0.64 0.10 efficiency = 27.3% B 0 KSB 0 KS 5.2 5.4 5.28 GeV/c 2 BaBar Beam-Energy Constrained Mass sin2 (ccs)
35
A. Bay LPHE EPF Lausanne35 from B D 0 K D 0 Ks + - See A.Giri, Yu.Grossman, A.Soffer, J.Zupan hep-ph/0303187 u u B+B+ b c s D0D0 Ks ++ -- K+K+ u B+B+ c s D0D0 ++ -- b u K+K+ D 0 and D 0 decay to same final state mixed state is produced: Dalitz's analysis with variables and a, , unknown
36
A. Bay LPHE EPF Lausanne36 from B D 0 K D 0 Ks + -.2 0.5 1 1.5 2 2.5 3 3 2 1 D 0 Ks + - as a sum of 2 body decays Fit Dalitz plot with a, , as free parameters a = 0.33±0.10±0.03±0.03 = 162° +20 -25 ±12°±24° = 95° +25 -20 ±13°±10° 90%CL: 61°< < 142° preliminary
37
A. Bay LPHE EPF Lausanne37 Belle: very, very preliminary
38
A. Bay LPHE EPF Lausanne38 from B 0 W u d A = 0 S = sin(2 +2 )= sin(2 ) without penguin contributions: Isospin analysis needed for the extraction of . Need to measure also B 0 B + W t g d - This is not the case: large "penguin pollution" expected (but intrinsically interesting..!) Consider B 0 first:
39
A. Bay LPHE EPF Lausanne39 B0 B0 Phys Rev from ~231 : A = +0.58 0.15 0.07 S = 1.00 ± 0.21 ± 0.07 charmless 3-body B decay KK continuum syst. primarily from background fraction BABAR: A = 0.30 ± 0.25 ± 0.04 S = .02 ± 0.34 ± 0.05 A 0 hep-ex/0401029
40
A. Bay LPHE EPF Lausanne40 B 0 Belle BaBar direct CVP
41
A. Bay LPHE EPF Lausanne41 First signal from B 0 M bc [GeV/c 2 ] using 152 M BB: Br(B 0 ) = (1.7 ± 0.6 ± 0.2)10 -6 B+ B+ continuum BABAR: Br(B 0 ) = (2.1 ± 0.6 ± 0.3)10 -6 Phys. Rev. Lett. 91 (2003) 261801 (hep-ph/0306058 gives 74° < < 132°... )
42
A. Bay LPHE EPF Lausanne42 Global fit of data from all sources
43
A. Bay LPHE EPF Lausanne43 Test of SM in quark sector: check the triangle ! Does SM give a coherent picture of CP violation ? Unitary triangle can be build using its sides or the angles. Other information comes form CPV with Kaons and B. All the information must be consistent (else new physics ? or measurement error ? or bad supporting theory ?)
44
A. Bay LPHE EPF Lausanne44 Test of SM in quark sector Summer 2004 sin(2 ) = 0.726 ± 0.037 from J/ K 0 sin(2 ) = 0.734 ± 0.043 from sides (68% and 95% CL contours) from sides Summer 2005 sin(2 ) = 0.687 ± 0.032 from J/ K 0 sin(2 ) = 0.793 ± 0.033 from sides 2.3 2005 test not so good... Compare unitarity triangle from CP-violating processes K CPV in K sector and sin(2 ) CPV in B sector with unitarity triangle measured from the sides only i.e.from CP-conserving processes (|Vub| and m d, m s )
45
A. Bay LPHE EPF Lausanne45 Test of SM in quark sector.2 Measure unitarity triangle only from the angles in B decays: sin(2 ) from B 0 (cc)K 0 interference of b c amplitude with B 0_ B 0 mixing (or + ) from B , , interference of b u amplitude with B 0 _ B 0 mixing from B D (*) K interference of b c and b u amplitudes Test passed. Compare again with triangle from (CP conserving) side measurements
46
A. Bay LPHE EPF Lausanne46 sin(2 ) from b s penguin Naive average of all b s modes deviated from B (cc)K 0 modes by 3.8 in 2003, now only 2.6 sin(2 ) eff =0.43±0.07 to be compared with all charmonium result 0.726±0.036
47
A. Bay LPHE EPF Lausanne47 Other topics (a few hep-ex) sin(2 ) from J/ hep-ex/0308053 hep-ex/0308053 from B D* hep-ex/0308048 hep-ex/0308048 Rare B decays: B hh { , K , KK, } hep-ex/0307077, hep-ex/0306007 hep-ex/0307077hep-ex/0306007 B Khh {K } hep-ex/0307082 hep-ex/0307082 B pph, p hep-ex/0302024 hep-ex/0302024 B K ( * ) , K ( * ) K ( * ) ll hep-ex/0308044 hep-ex/0308044 B K hep-ex/0305068 hep-ex/0305068 B c p Phys. Rev. Lett. 90 (2003) 121802 CPV results: EPR & Bell test of QM: hep-ex/0310192 Phys. Rev. Lett. 91 (2003) 262001 New charmonium X(3871):
48
A. Bay LPHE EPF Lausanne48 downstrange beauty up 0.1% 1% 5% charm 2% 2% 3% top 5% 5% 29% CKM matrix 2007 * V ij )/ V ij ~ CDF + D0: 4 fb -1 each BABAR + Belle: ~1000 fb -1 CLEO-C (sin(2 )) ≈ 0.03 from B 0 J/ K S * no precise measurement of other angles
49
A. Bay LPHE EPF Lausanne49 CKM triangle in 2007 (SM) Picture will be already inconsistent ? from m from b c from b u from B J/ Ks
50
A. Bay LPHE EPF Lausanne50 BEYOND 2007
51
A. Bay LPHE EPF Lausanne51 Landscape cancelled proposed under constr. running 2000 200220042006200820102012 BES IIBES III CLEO-c charm factories CLEO III BABAR BelleSuper-B B factories e + e –, √s = m (4S) ATLAS CMS LHCb LHC pp, √s = 14 TeV We are here K experiments BNL E949 KOPIO NA48/3 CKM KAMI KEK E391a CDF II D0 BTeV Tevatron pp, √s = 2 TeV From O.Schneider International WE Heraeus Summer School, Dresden
52
A. Bay LPHE EPF Lausanne52 Experiments in hadronic flavour physics PhysicsExp.MachineLaboratory Operation dates B and charm BABAR PEP-II, e e (4S) SLAC (USA)1999–2008 Belle KEKB, e e (4S) KEK (Japan)1999–2009 CDF II Tevatron, pp √s = 2 TeV Fermilab (USA) 2001–2009 D0 charm CLEO-c CESR-c, e e (3770), … Cornell (USA) 2003–2008 K E391a 12 GeV PSKEK (Japan)2004–2006 B (and high p T ) ATLAS LHC, pp √s = 14 TeVCERN2007– CMS B and charm LHCb charm BES III BEPC II, e e (3770), … IHEP (China)2007– B and charm Super- Belle Super-KEKB, e e (4S) KEK (Japan)2011– K NA48/3 SPSCERN2009– K (proposals expected end 2005) JPARC? Proposed Coming soon Running
53
A. Bay LPHE EPF Lausanne53 ~V ub from B X u + B0B0 B0B0 B0B0 J K s WW t t CP Asym ~ sin{ 2 } t d b t W W b d ~ ~V td SM view of the unitary triangle from m:
54
A. Bay LPHE EPF Lausanne54 ~V ub from B X u + new B0B0 B0B0 B0B0 J K s WW t t CP Asym ~ sin{2( new )} t d b t W W b d ~ d b b d NEW FCNC Unchanged r new NEWNEW Im Re ~V td SM + New FCNC from m:
55
A. Bay LPHE EPF Lausanne55 ~V ub from B X u + new B0B0 B0B0 B0B0 J K s WW t t CP Asym ~ sin{2( new )} t d b t W W b d ~ d b b d NEW FCNC Unchanged r new NEWNEW Im Re ~V td SM + New FCNC (bis) from m:
56
A. Bay LPHE EPF Lausanne56 and new physics from B d D* n +, D* + n , etc. Idem with B s decays: s new from CP in B s J s new from CP in B s D s K , D s K compare the two determinations (then combine them) B d D* n vs B d D* n B d D* n vs B d D* n From 2( new ) + CP in B J/ K s ~ 2( + new ) need to trigger and select hadronic decay channels, need to study the B s system, have K/ separation, access to Br < 10 7 ….
57
A. Bay LPHE EPF Lausanne57 B physics at LHC(b) bb ~500 b, 10 12 bb / year at L=2 10 32 cm 2 s B u (40%), B d (40%), B s (10%), B c, and b-baryons (10%) Many primary particles to determine b production vertex bb / inelastic ~ 0.6% => triggering problem Many particles not associated to b hadrons No B 0 -B 0 entangled states: mixing dilutes tagging good things: not so good:
58
A. Bay LPHE EPF Lausanne58 LHCb Forward detector (1.9 4.9) ~ 50% acceptance for bb pairs 3 2 1 b [rad] 0 1 2 3 B shielding removed !
59
A. Bay LPHE EPF Lausanne59 LHCb — RICH detectors for PID —vertex detectors inside beam vacuum
60
A. Bay LPHE EPF Lausanne60 VErtex LOcator (VELO) 21 stations, ~200k channels, analogue R/O (Beetle) r- and -measuring stations with Si “striplets” IP = 14 + 35 /p T From tracking: p/p = 0.35% – 0.55% can observe 5 signal if m s < 68 ps 1 m s = 25 ps 1 B s oscillation B s oscillation from B s D s sample 0 1 2 3 4 5 6 [ps]
61
A. Bay LPHE EPF Lausanne61 LHCb ATLAS 0 20 40 60 80 GeV/c Particle ID RICH1 RICH2 Aerogel & C 4 F 10 CF 4 prob ( K) K efficiency
62
A. Bay LPHE EPF Lausanne62 Triggers 1 MHz 40 MHz Detached vertex + IP of p T candidate Medium p T hadron, ,e, + pileup veto (12.4 MHz of inelastic interactions) LHCb 40 kHz L0 L1 B 0 J/ K S B s D s K + B 0 0.880.540.76 0.900.700.72 0.790.380.55 Efficiencies for signal events accepted by offline selection ln p T ln IP/ IP L1 Signal Min. Bias B0 B0 B s D s K + Final state reconstruction ~2 kHz HLT
63
A. Bay LPHE EPF Lausanne63 LHCb after 10 7 seconds Parameter Channels N untagged B d + 20k @ P/T = 30°, |P/T|=0.20 0.02, =90° 2 -5 B d 0 4k @ =50° 5 2 + B d D* 200k @2 + =0 12 B d J/ K s 200k <0.6 -2 B s D s K 5400 @ m s =20ps -1 14 B d D(KK)K* 600 =55°-105° <8 B s J/ 120k 0.6 B d + / K + K - 20k/30k @ =55°-105° <6 B d Ks 0.8k <20 ? m s B s D s 80k s/b~3, up to 68 ps -1 (5 ) A few penguins : B s 1.2k B d K + - 135k B s K + K - 37k B d K *0 35k B s 9.3k B d K *0 4.4k (Using PDG branching ratios or SM predictions) not possible at B factory
64
A. Bay LPHE EPF Lausanne64 CKM triangle in 2007+10 7 s ? from B J/ Ks from m d, m s from b u from LHCb Re Im
65
A. Bay LPHE EPF Lausanne65 Key contributions expected from charm factories Improve determination of from B DK tree processes: –Measure more precisely D 0 K S + – Dalitz plot –Measure D meson strong phase differences appearing in ADS analyses of B + DK + Improve extraction of right side of UT from B oscillations measurements: –Measure decay constants f D+ and f Ds from purely leptonic decays: –Compare with lattice QCD calculations: reduce uncertainty on theory predictions for f B0 and f Bs (e.g. rely on LQCD only to predict ratio between B and D constants) reduce theory error in extraction of |V td |/|V ts | from m d / m s new, 50 evts new, 201±3±17 MeV
66
A. Bay LPHE EPF Lausanne66 Charm factories CLEO-c experiment (Cornell): –Taking data above charm threshold since 2003: e + e – (3770) D + D – or D 0 D 0 (281 pb –1 so far) –Plan to go also above D s threshold ( s=4.1 GeV): e + e – (…) D s + D s –, … –May still spend one year on J/ or (2S) –End in 2008 BES III experiment (Beijing): –BES II stopped in 2004 27.7 pb –1 recorded at (3770) –Old BEPC storage ring dismantled this summer to install a new double- ring machine, BEPCII design luminosity 10 33 cm –2 s –1 at (3770) (= 100 times BEPC) –Major detector upgrade: BESII BESIII –Start of physics commissioning in 2007 –Will run on J/ , (2S), (3770), etc …
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.