Presentation is loading. Please wait.

Presentation is loading. Please wait.

A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb.

Similar presentations


Presentation on theme: "A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb."— Presentation transcript:

1 A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb

2 A. Bay LPHE EPF Lausanne2 CP & T violation only in K 0 system ??? Since 1964, CP and or T violation was searched for in other systems than K 0, other particles decays, EDM... No other signal until 2001...

3 A. Bay LPHE EPF Lausanne3  production of  (4s) (10.58GeV/c 2 )  = 0.425  (4s)  B 0 B 0  B + B  BaBar (SLAC) and Belle (KEK) in 2001: observation of CP violation in the B meson system, using "asymmetric collider" B factories. KEKB machine: 8 GeV electrons 3.5GeV positron

4 A. Bay LPHE EPF Lausanne4 KEKB 24% Y(4s) 76% continuum year 2003: crossing the (psychological) luminosity barrier of 10 34 cm -2 s -1 1.5807 10 34 on 18-May-2005

5 A. Bay LPHE EPF Lausanne5 Peak luminosity cm  s  Luminosity trend in the last 30 years

6 A. Bay LPHE EPF Lausanne6 BaBar and Belle Study of the time dependent asymmetry in decay rates of B 0 and anti-B 0  m = mass difference of "mass eigenstates" ~ 0.49 10 12  /s CP violated  S ≠ 0

7 A. Bay LPHE EPF Lausanne7 CP measurements at B factories Difficult: B 0 mean life 1.54 10  s. Lorentz boost very small. B factories are asymmetric: the c.m. is moving. The two B decay at different position ~ on the z axis. We measure de difference  z of the 2 vertices.  r is small. Δz  cβγΔt ~ 200  m at Belle  (4s) z z1z1 z2z2 zz J/  Ks e D rr

8 A. Bay LPHE EPF Lausanne8 CP measurements at B factories  (4s) z z1z1 z2z2 zz J/  Ks f CP B 0 and anti-B 0 oscillate coherently (QM entangled state). When the first decays, the other is known to be of the opposite flavour  use the other side to infer the flavour, B 0 or anti-B 0, of the f CP parent e D region of B 0 & B 0 coherent evolution

9 A. Bay LPHE EPF Lausanne9 Belle experiment Central Drift Chamber He/C 2 H 5 (  Pt/Pt) 2 =(0.0019 Pt) 2 +(0.0030) 2 CsI(Tl) 16X 0  E/E ~ 1.8% @1GeV Aerogel Cherenkov n=1.015~1.030 Si Vertex detector 3 layers  mid 2003 now 4 layers Impact parameter resolution  55  m for p=1GeV/c TOF counter SC solenoid 1.5T 8GeV e  3.5GeV e  Started in 1999 ~300 physicists from ~60 institutes in 14 countries.  / K L detection 14/15 layers of RPC+Fe   : efficiency > 90% 1GeV/c Particle ID : dE/dx in CDC  dE/dx =6.9% TOF  TOF = 95ps Aerogel Cerenkov ACC Efficiency = ~90%, Fake rate = ~6%  3.5GeV/c

10 A. Bay LPHE EPF Lausanne10 BelleBelle ACC Silicon Vertex Detector SVD Impact parameter resolution  55  m for p=1GeV/c at normal incidence Central Drift Chamber CDC (  Pt/Pt) 2 = (0.0019 Pt) 2 + (0.0030) 2 K/  separation : dE/dx in CDC  dE/dx =6.9% TOF  TOF = 95ps Aerogel Cerenkov ACC Efficiency = ~90%, Fake rate = ~6%  3.5GeV/c , e  : CsI crystals ECL  E/E ~ 1.8% @ E=1GeV e  : efficiency > 90% ~0.3% fake for p > 1GeV/c KL and   : KLM (RPC)   : efficiency > 90% 1GeV/c ~ 8 m 400 fb  4 10 8 B pairs

11 A. Bay LPHE EPF Lausanne11 spatial resolution for B  lepton + X  z (lepton) ~ 100  m Belle micro-vertex detector

12 A. Bay LPHE EPF Lausanne12 Belle event

13 A. Bay LPHE EPF Lausanne13 Particle ID in Belle Particle ID uses information from ACC, TOF, dE/dx( CDC) Barrel ACC Endcap ACC dE/dx TOF p (GeV/c) cut

14 A. Bay LPHE EPF Lausanne14 Experimental program: measure sides and angles of the CKM matrix * CP violated in the SM => the area of triangle  0 * Any inconsistency could be a signal of the existence of phenomena not included in the SM    ~V ub ~V td ~V cb Use B mesons phenomenology t quark oscillations CP asymmetries b quark decays

15 A. Bay LPHE EPF Lausanne15 Analysis and results Continuum rejection Kinematics at the Y(4s) The Unitary triangle: determination of Vub " Vcb " Vtd "  "  "  No time for other topics    ~V ub ~V td ~V cb

16 A. Bay LPHE EPF Lausanne16 Continuum rejection 24% Y(4s) 76% continuum from event topology which is ~spherical for BB, jet like for continuum and angular distributions BB qq Build Likelihood L for B and qq hypothesis using event shape variables and cos  B 0 0.2 0.4 0.6 0.8 1 cut

17 A. Bay LPHE EPF Lausanne17 How to find a B meson? Kinematics variables at the Y(4S) M bc 5.2 5.24 5.28 GeV/c 2 0 EE 0.2  0.2 GeV/c 2 Gather candidates B and calculate (p B,E B ). Boost to c.m. (p B *,E B * ) "beam constrained mass" Example: B   D 0   with

18 A. Bay LPHE EPF Lausanne18 Determination of Vcb WW b c Vcb World Average: |Vcb| (inclusive) (42.0  0.6  0.8) 10 -3 |Vcb| (exclusive) (40.2 +2.1 ) 10 -3 -1.8 (Moriond excl. D*: CLEO: 46.9 10 -3 BABAR: 48.2 10 -3 ) D0D0 g(y) known function of y d D* + B0B0 q F(y) hadronic form factor plus ~5% error on F(1)

19 A. Bay LPHE EPF Lausanne19 Determination of Vub W b u Vub bcbc bubu 0 1 2 3 GeV/c Lepton momentum (in c.m.) Exemple: use lepton momentum distribution from inclusive semileptonic decays Less than 10% of the spectrum background free hep-ex/0305037, with reconstruction |Vub| (10 -3 ) = 3.96  0.17(stat)  0.44(syst)  0.29(theo)  0.34(b  c)  0.26(b  u) Average(inclusive) Vub=(4.12±0.13±0.60)10 -3

20 A. Bay LPHE EPF Lausanne20 Determination of Vtd B0B0 B0B0 t d b t W W b d Vtd 0 3 6 9 ps Probability 1 B0B0 B0B0 Starting from a pure sample of B 0, for instance, a B 0 component builds up in a time scale of a few ps: measure oscillation frequency

21 A. Bay LPHE EPF Lausanne21 region of B 0 & B 0 coherent evolution  m d with di-lepton events * KEK-B boost   cβγ  ~ 200  m  (4s) z z1z1 z2z2 zz e+e+  * Tag B flavour from semileptonic B 0  X  l   B 0  X  l  X Y * B 0 and B 0 oscillate coherently (QM entangled state). When the first decays, the other is known to be of the opposite flavour. t ~  z/c 

22 A. Bay LPHE EPF Lausanne22  m d from di-lepton events.2 -12 -8 -4 0 GeV 2 N Missing mass Background: B +  X  l   B   X  l  Selection strategy of the "soft pion tag" B 0  D*  l  Br  3%  D 0   Br  70% Event selection: - 1 st lepton P*> 1.8 GeV - 1 pion of opposite sign P* < 1 GeV - 2 nd lepton P*> 1.3 GeV - cut on M 2 (Frederic Ronga, PhD thesis, 2003)

23 A. Bay LPHE EPF Lausanne23  m d from di-lepton events.3 Get  z distributions for "Same Sign" and "Opposite Sign" leptons couples and fit for  m d... OS SS J/   l + l  to infer resolution -2 -1 0 1 2  z (mm) SS -2 -1 0 1 2  z (mm) OS 0 1 2  z (mm)

24 A. Bay LPHE EPF Lausanne24 F. Ronga average  m d and Vtd HEP-PH/0206171 Bag parameter B decay constant  |V td | ~ (8±2)10 -3 ~20% error ! {

25 A. Bay LPHE EPF Lausanne25 UT sides The Unitary Triangle inferred from its sides and from K 0 data Vub/Vcb From K 0  m d &  m s 1 0 Excluded area has <0.05 CL

26 A. Bay LPHE EPF Lausanne26  from B 0  J/  Ks b d B0B0 Vcb c c s KsKs J/  d B0B0 Vcb c s KsKs J/  Vt d Vtb VtdVtb c b Interference between the 2 amplitudes gives a "time-dependent CPV" CKM phase  0 ! CKM phase = 0 sin2  } SM: B0B0 d Golden Channel

27 A. Bay LPHE EPF Lausanne27 Any "direct" CP violation ? b d B0B0 Vcb c c s KsKs J/  d B0B0 Vtbc KsKs J/  c b s No "direct CPV" expected in SM in B  J/  Ks, but who knows ?... CKM phase = 0 t Vts sin2  } SM: } 0

28 A. Bay LPHE EPF Lausanne28  Time dependent asymmetry measurement  (4s) z z1z1 z2z2 zz J/  Ks f CP e D region of B 0 & B 0 coherent evolution Need to "tag" the flavour: B 0 or B 0. B 0 and B 0 oscillate coherently (QM entangled state)  use the other side to infer the flavour t ~  z / c  f tag

29 A. Bay LPHE EPF Lausanne29 b  ccs reconstruction 140 fb  1, 152M BB pairs B 0  J/  K L b  ccs (J/  K L excluded) 5417 events are used in the fit. p B GeV/c

30 A. Bay LPHE EPF Lausanne30 A large CP asymmetry has been observed! World average (October 2005): S CP = 0.726 ± 0.037 J/  K L A CP ~ 0, compatible with no direct CPV SM: S CP = sin(2  ) =>   or 66.3°) J/  K L is OK

31 A. Bay LPHE EPF Lausanne31 SM & KM model is verified !  = 23.7°± 2.1° = 66.3°± 2.1°

32 A. Bay LPHE EPF Lausanne32 UT with sin2  The Unitary Triangle fit including sides, K 0 data, and sin2 

33 A. Bay LPHE EPF Lausanne33 b  sss, a B 0   Ks puzzle ? b to s transition is second order (gluonic penguin). Prediction from SM: ~ same value of sin(2  ) as in ccs because no additional phase from the loop. V ts V tb * B0B0 b d s s d Ks  s W t ??? B0B0 b d s s d  s  squark unless new physics enters the loop. For instance:

34 A. Bay LPHE EPF Lausanne34 B 0   Ks.2 68  11 signals 106 candidates in the fit purity = 0.64  0.10 efficiency = 27.3% B 0  KSB 0  KS 5.2 5.4 5.28 GeV/c 2 BaBar Beam-Energy Constrained Mass sin2  (ccs)

35 A. Bay LPHE EPF Lausanne35  from B  D 0 K D 0  Ks  +  - See A.Giri, Yu.Grossman, A.Soffer, J.Zupan hep-ph/0303187 u u B+B+ b c s D0D0 Ks ++ -- K+K+ u B+B+ c s D0D0 ++ -- b u K+K+ D 0 and D 0 decay to same final state  mixed state is produced: Dalitz's analysis with variables and a, ,  unknown

36 A. Bay LPHE EPF Lausanne36  from B  D 0 K D 0  Ks  +  -.2 0.5 1 1.5 2 2.5 3 3 2 1 D 0  Ks  +  - as a sum of 2 body decays Fit Dalitz plot with a, ,  as free parameters a = 0.33±0.10±0.03±0.03  = 162° +20 -25 ±12°±24°  = 95° +25 -20 ±13°±10° 90%CL: 61°<  < 142° preliminary

37 A. Bay LPHE EPF Lausanne37 Belle: very, very preliminary

38 A. Bay LPHE EPF Lausanne38  from B 0   W u d   A  = 0 S  = sin(2  +2  )=  sin(2  ) without penguin contributions: Isospin analysis needed for the extraction of . Need to measure also  B 0      B +      W t g d  - This is not the case: large "penguin pollution" expected (but intrinsically interesting..!) Consider B 0     first:

39 A. Bay LPHE EPF Lausanne39 B0  B0   Phys Rev from ~231     : A  = +0.58  0.15  0.07 S  =  1.00 ± 0.21 ± 0.07 charmless 3-body B decay  KK continuum syst. primarily from background fraction BABAR: A  = 0.30 ± 0.25 ± 0.04 S  = .02 ± 0.34 ± 0.05 A  0 hep-ex/0401029

40 A. Bay LPHE EPF Lausanne40 B 0        Belle BaBar direct CVP

41 A. Bay LPHE EPF Lausanne41 First signal from B 0      M bc [GeV/c 2 ] using 152 M BB: Br(B 0      ) = (1.7 ± 0.6 ± 0.2)10 -6 B+ B+   continuum BABAR: Br(B 0      ) = (2.1 ± 0.6 ± 0.3)10 -6 Phys. Rev. Lett. 91 (2003) 261801 (hep-ph/0306058 gives 74° <  < 132°... )

42 A. Bay LPHE EPF Lausanne42 Global fit of data from all sources

43 A. Bay LPHE EPF Lausanne43 Test of SM in quark sector: check the triangle ! Does SM give a coherent picture of CP violation ? Unitary triangle can be build using its sides or the angles. Other information comes form CPV with Kaons and B. All the information must be consistent (else  new physics ? or measurement error ? or bad supporting theory ?)

44 A. Bay LPHE EPF Lausanne44 Test of SM in quark sector Summer 2004 sin(2  ) = 0.726 ± 0.037 from J/  K 0 sin(2  ) = 0.734 ± 0.043 from sides (68% and 95% CL contours) from sides Summer 2005 sin(2  ) = 0.687 ± 0.032 from J/  K 0 sin(2  ) = 0.793 ± 0.033 from sides 2.3  2005 test not so good... Compare unitarity triangle from CP-violating processes  K CPV in K sector and sin(2  ) CPV in B sector with unitarity triangle measured from the sides only i.e.from CP-conserving processes (|Vub| and  m d,  m s )

45 A. Bay LPHE EPF Lausanne45 Test of SM in quark sector.2 Measure unitarity triangle only from the angles in B decays: sin(2  ) from B 0  (cc)K 0 interference of b  c amplitude with B 0_ B 0 mixing  (or  +  ) from B  , ,  interference of b  u amplitude with B 0 _ B 0 mixing  from B  D (*) K interference of b  c and b  u amplitudes Test passed. Compare again with triangle from (CP conserving) side measurements

46 A. Bay LPHE EPF Lausanne46 sin(2  ) from b  s penguin Naive average of all b  s modes deviated from B  (cc)K 0 modes by 3.8  in 2003, now only 2.6  sin(2  ) eff =0.43±0.07 to be compared with all charmonium result 0.726±0.036

47 A. Bay LPHE EPF Lausanne47 Other topics (a few hep-ex) sin(2  ) from J/   hep-ex/0308053 hep-ex/0308053  from B  D*  hep-ex/0308048 hep-ex/0308048 Rare B decays: B  hh { , K , KK,  } hep-ex/0307077, hep-ex/0306007 hep-ex/0307077hep-ex/0306007 B  Khh {K  } hep-ex/0307082 hep-ex/0307082 B  pph, p  hep-ex/0302024 hep-ex/0302024 B  K ( * ) ,  K ( * )  K ( * ) ll hep-ex/0308044 hep-ex/0308044 B   K hep-ex/0305068 hep-ex/0305068 B   c p Phys. Rev. Lett. 90 (2003) 121802 CPV results: EPR & Bell test of QM: hep-ex/0310192 Phys. Rev. Lett. 91 (2003) 262001 New charmonium X(3871):

48 A. Bay LPHE EPF Lausanne48 downstrange beauty up 0.1% 1% 5% charm 2% 2% 3% top 5% 5% 29% CKM matrix 2007 *  V ij  )/  V ij  ~ CDF + D0: 4 fb -1 each BABAR + Belle: ~1000 fb -1 CLEO-C  (sin(2  )) ≈ 0.03 from B 0  J/  K S * no precise measurement of other angles

49 A. Bay LPHE EPF Lausanne49 CKM triangle in 2007 (SM) Picture will be already inconsistent ?  from  m from b  c from b  u  from B  J/  Ks

50 A. Bay LPHE EPF Lausanne50 BEYOND 2007

51 A. Bay LPHE EPF Lausanne51 Landscape cancelled proposed under constr. running 2000 200220042006200820102012 BES IIBES III CLEO-c charm factories CLEO III BABAR BelleSuper-B B factories e + e –, √s = m  (4S) ATLAS CMS LHCb LHC pp, √s = 14 TeV We are here K  experiments BNL E949 KOPIO NA48/3 CKM KAMI KEK E391a CDF II D0 BTeV Tevatron pp, √s = 2 TeV From O.Schneider International WE Heraeus Summer School, Dresden

52 A. Bay LPHE EPF Lausanne52 Experiments in hadronic flavour physics PhysicsExp.MachineLaboratory Operation dates B and charm BABAR PEP-II, e  e    (4S) SLAC (USA)1999–2008 Belle KEKB, e  e    (4S) KEK (Japan)1999–2009 CDF II Tevatron, pp √s = 2 TeV Fermilab (USA) 2001–2009 D0 charm CLEO-c CESR-c, e  e    (3770), … Cornell (USA) 2003–2008 K   E391a 12 GeV PSKEK (Japan)2004–2006 B (and high p T ) ATLAS LHC, pp √s = 14 TeVCERN2007– CMS B and charm LHCb charm BES III BEPC II, e  e    (3770), … IHEP (China)2007– B and charm Super- Belle Super-KEKB, e  e    (4S) KEK (Japan)2011– K   NA48/3 SPSCERN2009– K   (proposals expected end 2005) JPARC? Proposed Coming soon Running

53 A. Bay LPHE EPF Lausanne53 ~V ub     from B  X u +  B0B0 B0B0 B0B0 J  K s WW t t CP Asym ~ sin{ 2  } t d b t W W b d ~     ~V td SM view of the unitary triangle from  m:

54 A. Bay LPHE EPF Lausanne54 ~V ub     from B  X u +   new B0B0 B0B0 B0B0 J  K s WW t t CP Asym ~ sin{2(  new )} t d b t W W b d ~     d b b d NEW FCNC Unchanged   r new NEWNEW Im Re ~V td SM + New FCNC from  m:

55 A. Bay LPHE EPF Lausanne55 ~V ub     from B  X u +   new B0B0 B0B0 B0B0 J  K s WW t t CP Asym ~ sin{2(  new )} t d b t W W b d ~     d b b d NEW FCNC Unchanged   r new NEWNEW Im Re ~V td SM + New FCNC (bis) from  m: 

56 A. Bay LPHE EPF Lausanne56  and new physics from B d  D*  n  +, D* + n  , etc. Idem with B s decays:    s new  from CP in B s  J     s new   from CP in B s  D s  K , D s  K  compare the two  determinations (then combine them) B d  D*  n  vs B d  D*  n  B d  D*  n  vs B d  D*  n  From 2(  new ) +    CP in B  J/  K s ~ 2(  +  new )  need to trigger and select hadronic decay channels, need to study the B s system, have K/  separation, access to Br < 10  7 ….

57 A. Bay LPHE EPF Lausanne57  B physics at LHC(b)   bb  ~500  b, 10 12 bb / year at L=2  10 32 cm  2 s  B u (40%), B d (40%), B s (10%), B c, and b-baryons (10%) Many primary particles to determine b production vertex    bb /  inelastic  ~ 0.6% => triggering problem  Many particles not associated to b hadrons  No B 0 -B 0 entangled states: mixing dilutes tagging good things: not so good:

58 A. Bay LPHE EPF Lausanne58 LHCb Forward detector (1.9    4.9) ~ 50% acceptance for bb pairs 3 2 1  b [rad] 0 1 2 3 B shielding removed !

59 A. Bay LPHE EPF Lausanne59 LHCb — RICH detectors for PID —vertex detectors inside beam vacuum

60 A. Bay LPHE EPF Lausanne60 VErtex LOcator (VELO) 21 stations, ~200k channels, analogue R/O (Beetle) r- and  -measuring stations with Si “striplets”  IP = 14  + 35  /p T From tracking:  p/p = 0.35% – 0.55% can observe 5  signal if  m s < 68 ps  1  m s = 25 ps  1 B s oscillation B s oscillation from B s  D s    sample 0 1 2 3 4 5 6 [ps]

61 A. Bay LPHE EPF Lausanne61 LHCb ATLAS 0 20 40 60 80 GeV/c Particle ID RICH1 RICH2 Aerogel & C 4 F 10 CF 4 prob (   K) K efficiency

62 A. Bay LPHE EPF Lausanne62 Triggers 1 MHz 40 MHz Detached vertex + IP of p T candidate Medium p T hadron, ,e,  + pileup veto (12.4 MHz of inelastic interactions) LHCb 40 kHz L0 L1 B 0  J/  K S B s  D s  K + B 0      0.880.540.76 0.900.700.72 0.790.380.55 Efficiencies for signal events accepted by offline selection  ln p T  ln IP/  IP L1 Signal Min. Bias B0  B0   B s  D s  K + Final state reconstruction ~2 kHz HLT

63 A. Bay LPHE EPF Lausanne63 LHCb after 10 7 seconds Parameter Channels N untagged   B d  +   20k @  P/T = 30°, |P/T|=0.20  0.02,  =90° 2  -5  B d 0    4k @  =50° 5  2  +  B d  D*  200k @2  +  =0 12   B d  J/  K s 200k <0.6   -2  B s  D s K 5400 @  m s =20ps -1 14   B d  D(KK)K* 600  =55°-105° <8   B s  J/  120k 0.6   B d   +   / K + K - 20k/30k @  =55°-105° <6   B d  Ks 0.8k <20  ?  m s B s  D s  80k s/b~3, up to 68 ps -1 (5  ) A few penguins : B s   1.2k B d  K +  - 135k B s  K + K - 37k B d  K *0  35k B s   9.3k B d  K *0  4.4k (Using PDG branching ratios or SM predictions) not possible at B factory

64 A. Bay LPHE EPF Lausanne64 CKM triangle in 2007+10 7 s ?      from B  J/  Ks from  m d,  m s from b  u  from LHCb Re Im

65 A. Bay LPHE EPF Lausanne65 Key contributions expected from charm factories Improve determination of  from B  DK tree processes: –Measure more precisely D 0  K S  +  – Dalitz plot –Measure D meson strong phase differences appearing in ADS analyses of B +  DK + Improve extraction of right side of UT from B oscillations measurements: –Measure decay constants f D+ and f Ds from purely leptonic decays: –Compare with lattice QCD calculations:  reduce uncertainty on theory predictions for f B0 and f Bs (e.g. rely on LQCD only to predict ratio between B and D constants)  reduce theory error in extraction of |V td |/|V ts | from  m d /  m s new, 50 evts new, 201±3±17 MeV

66 A. Bay LPHE EPF Lausanne66 Charm factories CLEO-c experiment (Cornell): –Taking data above charm threshold since 2003: e + e –   (3770)  D + D – or D 0 D 0 (281 pb –1 so far) –Plan to go also above D s threshold (  s=4.1 GeV): e + e –   (…)  D s + D s –, … –May still spend one year on J/  or  (2S) –End in 2008 BES III experiment (Beijing): –BES II stopped in 2004 27.7 pb –1 recorded at  (3770) –Old BEPC storage ring dismantled this summer to install a new double- ring machine, BEPCII design luminosity 10 33 cm –2 s –1 at  (3770) (= 100 times BEPC) –Major detector upgrade: BESII  BESIII –Start of physics commissioning in 2007 –Will run on J/ ,  (2S),  (3770), etc …


Download ppt "A. Bay LPHE EPF Lausanne1 Summary B factories and LHCb."

Similar presentations


Ads by Google