Download presentation
Presentation is loading. Please wait.
1
A new algorithm for the downscaling of 3-dimensional cloud fields Victor Venema Sebastián Gimeno García Clemens Simmer
2
Victor.Venema@uni-bonn.de, http://www.meteo.uni-bonn.de/venema Applications Downscaling 3D CRM/NWP model fields Downscaling of 2D satellite measurements Coarse mean LWC Coarse cloud fraction
3
Victor.Venema@uni-bonn.de, http://www.meteo.uni-bonn.de/venema Requirements downscaling method Nonlinear processes –Sub (coarse) scale distribution –IPA-bias: if you average instead of (ir)radiances Non-local processes –For example spatial correlations –3D bias: ignore horizontal photon transport to low
4
Victor.Venema@uni-bonn.de, http://www.meteo.uni-bonn.de/venema Downscaling - Cumulus No. clear subpixels Coarse means Original High resolution original => –Coarse means –No clear subpixels 2 coarse fields –Input downscaling Real application start with coarse fields Compare high- resolution fields –Physical –Radiative
5
Victor.Venema@uni-bonn.de, http://www.meteo.uni-bonn.de/venema Downscaling - Cumulus No. clear subpixels Surrogate Coarse means High resolution original => –Coarse means –No clear subpixels 2 coarse fields –Input downscaling Real application start with coarse fields Compare high- resolution fields –Physical –Radiative
6
Victor.Venema@uni-bonn.de, http://www.meteo.uni-bonn.de/venema Downscaling - Cumulus No. clear subpixels Surrogate Coarse means Original High resolution original => –Coarse means –No clear subpixels 2 coarse fields –Input downscaling Real application start with coarse fields Compare high- resolution fields –Physical –Radiative
7
Cumulus validation data Diurnal cycle of Cu Land (ARM) 51 fields High resolution –64x64 pixels –Horizontal resolution 100m Coarse resolution –16x16 –Horizontal resolution 400m N c = 300 cm -3 Brown, A.R., R.T. Cederwall, A. Chlond, P.G. Duynkerke, J.C. Golaz, M. Khairoutdinov, D.C. Lewellen, A.P. Lock, M.K. MacVean, C.H. Moeng, R.A.J. Neggers, A.P. Siebesma and B. Stevens, 2002. Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land, Q. J. R. Meteorol. Soc., 128(582), 1075-1093.
8
Stratocumulus validation data Dissolving broken Sc Ocean (ASTEX) 29 fields High resolution –200x200 pixels –Horizontal resolution 50m Coarse resolution –20x20 –Horizontal resolution 500m N c = 200 cm -3 Chosson, F., J.-L. Brenguier and L. Schüller, "Entrainment-mixing and radiative Transfer Simulation in Boundary-Layer Clouds", J Atmos. Res.
9
Algorithm Preparations –Calculate power spectrum coarse LWC field –Extrapolate spectrum to smaller scales Main iterative loop –Adjust to the extrapolated spectrum –Adjust to the coarse fields –Remove jumps at edges of coarse field
10
Victor.Venema@uni-bonn.de, http://www.meteo.uni-bonn.de/venema Algorithm – flow diagram
11
Victor.Venema@uni-bonn.de, http://www.meteo.uni-bonn.de/venema Extrapolation power spectrum Algorithm works with any power spectrum Cumulus clouds –Assumption: Intermediate to small scales are fractal follow power law (Variance=ak b ) –Linear regression in log-log spectrum –Fitting range: small scales of coarse field (intermediate scales full field) Stratocumulus cloud –Not fractal at intermediate scales –Assumption: Shape power spectrum same for all clouds –Computed an average isotropic spectrum over all clouds –Scaled by average variance at intermediate scales
12
Victor.Venema@uni-bonn.de, http://www.meteo.uni-bonn.de/venema Example 3D fields CumulusStratocumulus Original Extrapolated Surrogate Coarse field
13
Victor.Venema@uni-bonn.de, http://www.meteo.uni-bonn.de/venema Example 3D fields CumulusStratocumulus Original Extrapolated Surrogate Coarse field
14
Victor.Venema@uni-bonn.de, http://www.meteo.uni-bonn.de/venema Two ExtrapolatedCoarse fieldInterpolated originals surrogatefield Scatterplot irradiances Cu Reflectance SZA 0° Reflectance SZA 60° Transmittance SZA 0° Transmittance SZA 60°
15
Victor.Venema@uni-bonn.de, http://www.meteo.uni-bonn.de/venema Two ExtrapolatedCoarse fieldInterpolated originals surrogatefield Scatterplot irradiances Sc Reflectance SZA 0° Reflectance SZA 60° Transmittance SZA 0° Transmittance SZA 60°
16
Victor.Venema@uni-bonn.de, http://www.meteo.uni-bonn.de/venema RMS relative difference Rel.Diff. = (Field-Orig)/Orig CumulusStratocumulus Field ReflectanceTransmittanceReflectanceTransmittance Second original0.010.00010.0020.0002 Coarse field0.520.02710.1440.0115 Interpol. field0.990.05400.2080.0157 Extrapolated spect.0.070.00320.0380.0032 Fractal spectrum0.070.00420.0200.0009 Exact spectrum0.010.00020.0070.0005
17
Victor.Venema@uni-bonn.de, http://www.meteo.uni-bonn.de/venema RMS relative difference Rel.Diff. = (Field-Orig)/Orig CumulusStratocumulus Field ReflectanceTransmittanceReflectanceTransmittance Second original0.010.00010.0020.0002 Coarse field0.520.02710.1440.0115 Interpol. field0.990.05400.2080.0157 Extrapolated spect.0.070.00320.0380.0032 Fractal spectrum0.070.00420.0200.0009 Exact spectrum0.010.00020.0070.0005
18
Victor.Venema@uni-bonn.de, http://www.meteo.uni-bonn.de/venema Conclusions Downscaling algorithm works –Large improvement for irradiances compared to coarse cloud fields Extrapolation is a significant error source –Low number of pixels in coarse fields –Best extrapolation method is application dependent
19
Victor.Venema@uni-bonn.de, http://www.meteo.uni-bonn.de/venema Outlook Importance of the coarse cloud fraction field Include a distribution for the anomalies Wavelets, increment distributions? Applications –Downscaling CRM/NWP model fields Anomalies, small-scale spectrum from LES or observations –Downscaling of satellite measurements Coarse LWP fields High resolution in situ LWC, R eff measurements
20
Victor.Venema@uni-bonn.de, http://www.meteo.uni-bonn.de/venema Outlook Importance of the coarse cloud fraction field Include a distribution for the anomalies Wavelets, increment distributions? Applications –Downscaling CRM/NWP model fields Anomalies, small-scale spectrum from LES or observations –Downscaling of satellite measurements Coarse LWP fields High resolution in situ LWC, R eff measurements Thank you for your attention!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.