Download presentation
Presentation is loading. Please wait.
1
1 Provably secure randomized blind signature scheme based on bilinear pairing Source: Computers and Mathematics with Applications Author: Chun-I Fan, Wei-Zhe Sun, Vincent Shi-Ming Huang Presenter: 林志鴻
2
2 Outline Introduction Preliminaries Randomized blind signature Performance and security Analysis Conclusion
3
3 Introduction User Signer + 盲因子 = (1)(2) + = (3) -盲因子 =
4
4 Introduction(cont.) Usage of Blind Signature Anonymous electronic voting Untraceable electronic cash system Security properties of Blind Signature Unlinkability Unforgeability randomization
5
5 Unlinkability Signer A B A? or B?
6
6 Blind signature with randomization 分成六個演算法 KeyGen(k) → (SK, PK) Blind(m, r, u) → α Sign(α,y, SK) → t Unblind(t, r) → s RandMix(u, y) → c ; σ=signature-message Verify(σ,PK) → {0,1} Verify((Unblind (Sign (Blind (m, r, u),y,SK),r),m, RandMix(u, y) ),PK)=1
7
7 Outline Introduction Preliminaries Randomized blind signature Performance and security Analysis Conclusion
8
8 Preliminaries Bilinear Pairing GDH Groups
9
9 Bilinear Pairing e : G 1 × G 1 → G 2 Bilinearity Non-degeneracy Computability
10
10 GDH Groups 對於一個循環群 G CDH problem ︰ 對 a,b ∈ Zq 給定 (P,aP,bP) ∈ G 計算 abP DDH problem ︰ 對 a,b,c ∈ Zq 給定 (P,aP,bP,cP) ∈ G 判斷 c=ab 若存在一多項式時間演算法 A 可解決 DDH 問 題但不存在任何演算法可解決 CDH 問題則此 循環群 G 稱為 GDH Groups
11
11 Outline Introduction Preliminaries Randomized blind signature Performance and security Analysis Conclusion
12
12 Randomized blind signature Initialization phase Blinding phase Signing phase Unblinding phase Verification phase
13
13 Randomized blind signature (cont.) Initialization phase 1. 輸入秘密參數 k 產生兩個 order q 的循環群 G 1,G 2,P 為 G 1 生成元, e: G 1 × G 1 →G 2 2. 簽章者選取兩個私鑰 x 1,x 2 ∈ Zq * 產生相對應 的公鑰 Pub 1 = x 1 P, Pub 2 = x 2 P,H:{0,1} * →G 1 * params = (q, H,G 1,G 2,e,P, Pub 1, Pub 2 )
14
14 Randomized blind signature (cont.) Blinding phase 1. 當使用者發送簽章要求時,簽章者隨機選取 y ∈ Z p * 傳送 ρ= yP 給使用者 2. 使用者準備明文 m 並隨機選取 u,r 1,r 2 ∈ Z p * ,設定 隨機參數 C = u ρ 3. 計算盲訊息 α 1 = r 1 H(m || C) + r 2 P α 2 = r 1 u (mod q) 4. 傳送 (α 1, α 2 ) 給簽章者
15
15 Randomized blind signature (cont.) Signing phase 簽章者計算 T = x 1 α 1 + x 2 yα 2 P 並回傳給使用者 Unblinding phase 使用者計算 S = r 1 -1 (T – r 2 Pub 1 ) 此時簽章 - 訊息組為 ( S, m, C ) Verification phase 驗證式子 e(S, P) = e(H(m || C), Pub 1 )e(C, Pub 2 ) Pub 1 = x 1 P, Pub 2 = x 2 P ρ= yP,C = u ρ α 1 = r 1 H(m || C) + r 2 P α 2 = r 1 u (mod q)
16
16 Randomized blind signature (cont.) 整體流程
17
17 Outline Introduction Preliminaries Randomized blind signature Performance and security Analysis Conclusion
18
18 Performance and security Analysis [11]A. Boldyreva [12]H. Elkamchouchi, Y. Abouelseoud [13]Y. Yu, S. Zheng, Y. Yang [14] [15]F. Zhang, K. Kim
19
19 Outline Introduction Preliminaries Randomized blind signature Performance and security Analysis Conclusion
20
20 Conclusion 本文提出了一個提供具有隨機屬性的 pairing- based 盲簽章並正式的證明此簽章具有 unlinkability, unforgeability, 和 randomization properties 。 本文提出的方法為第一個可證明安全的隨機 化盲簽章
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.