Download presentation
Presentation is loading. Please wait.
1
1 Protein2: Properties & Quantitation (Last week) Separation of proteins & peptides Protein localization & complexes Peptide identification (MS/MS) –Database searching & sequencing. Protein quantitation –Absolute & relative Protein modifications & crosslinking Protein - metabolite quantitation
2
2 Net1: Simulation & optimization Macroscopic continuous concentration rates –Cooperativity & Hill coefficients –Bistability Mesoscopic discrete molecular numbers –Approximate & exact stochastic Chromosome Copy Number Control Flux balance optimization –Universal stoichiometric matrix –Genomic sequence comparisons
3
3 Networks Why model? Red blood cell metabolism Enzyme kinetics (Pro2) Cell division cycle Checkpoints (RNA2) Plasmid Copy No. Control Single molecules Phage switch Stochastic bistability Comparative metabolism Genomic connections Circadian rhythm Long time delays E. coli chemotaxis Adaptive, spatial effects also, all have large genetic & kinetic datasets.
4
4 Types of interaction models Quantum Electrodynamicssubatomic Quantum mechanicselectron clouds Molecular mechanicsspherical atoms (101Pro1) Master equationsstochastic single molecules (Net1) Phenomenological rates ODEConcentration & time (C,t) Flux Balance dC ik /dt optima steady state (Net1) Thermodynamic modelsdC ik /dt = 0 k reversible reactions Steady State dC ik /dt = 0 (sum k reactions) Metabolic Control Analysisd(dC ik /dt)/dC j (i = chem.species) Spatially inhomogenous models dCi/dx Increasing scope, decreasing resolution
5
5 In vivo & (classical) in vitro 1) "Most measurements in enzyme kinetics are based on initial rate measurements, where only the substrate is present… enzymes in cells operate in the presence of their products" Fell p.54 (Pub)(Pub) 2) Enzymes & substrates are closer to equimolar than in classical in vitro experiments. 3) Proteins close to crystalline densities so some reactions occur faster while some normally spontaneous reactions become undetectably slow. e.g. Bouffard, et al., Dependence of lactose metabolism upon mutarotase encoded in the gal operon in E.coli. J Mol Biol. 1994; 244:269-78. (Pub)(Pub)
6
6 Human Red Blood Cell ODE model GLC e GLC i G6P F6P FDP GA3P DHAP 1,3 DPG 2,3 DPG 3PG 2PG PEP PYR LAC i LAC e GL6PGO6PRU5P R5P X5P GA3P S7P F6P E4P GA3PF6P NADP NADPH NADP NADPH ADP ATP ADP ATP ADP ATP NADH NAD ADP ATP NADH NAD K+K+ Na + ADP ATP ADP ATP 2 GSHGSSG NADPHNADP ADO INO AMP IMP ADO e INO e ADE ADE e HYPX PRPP R1P R5P ATP AMP ATP ADP Cl - pH HCO 3 - ODE model Jamshidi et al. 2000 (Pub)(Pub)
7
7 Factors Constraining Metabolic Function Physicochemical factors –Mass, energy, and redox balance: Systemic stoichiometry –osmotic pressure, electroneutrality, solvent capacity, molecular diffusion, thermodynamics –Non-adjustable constraints System specific factors –Capacity: Maximum fluxes –Rates: Enzyme kinetics –Gene Regulation –Adjustable constraints
8
8 Dynamic mass balances on each metabolite Time derivatives of metabolite concentrations are linear combination of the reaction rates. The reaction rates are non-linear functions of the metabolite concentrations (typically from in vitro kinetics). 1.v j is the jth reaction rate, b is the transport rate vector, S ij is the “Stoichiometric matrix” = moles of metabolite i produced in reaction j V syn V deg V trans V use
9
9 RBC model integration Reference Glyc- PPP ANM Na + /K + Osmot. Trans- Hb-5 Gpx Shape olysis Pump port ligands Hb Ca Rapoport ’74-6 + - - - - - - - - -’74-6 Heinrich ’77 + - - - - - - - - - Ataullakhanov’81 + + - - - - - - - - Schauer ’81 + - + - - - - - - - Brumen ’84 + - - + + - - - - - Werner ’85 + - - + + + - - - - Joshi ’90 + + + + + + - - - - Yoshida ’90 - - - - - - + - - -’90 Lee ’92 + + + + + + (+) - - - Gimsa ’98 - - - - - - - - - + Destro-Bisol ‘99 - - - - - - - (-) - -‘99 Jamshidi ’00 + + + + + + - - - -’00
10
10 Scopes & Assumptions Mechanism of ATP utilization other than nucleotide metabolism and the Na + /K + pump (75%) is not specifically defined Ca 2+ transport not included Guanine nucleotide metabolism neglected –little information, minor importance Cl -, HCO 3 -, LAC, etc. are in “pseudo” equilibrium No intracellular concentration gradients Rate constants represent a “typical cell” Surface area of the membrane is constant Environment is treated as a sink
11
11 Glycolysis Dynamic Mass Balances
12
12 Enzyme Kinetic Expressions Phosphofructokinase AMP v F6P
13
13 Kinetic Expressions All rate expressions are similar to the previously shown rate expression for phosphofructokinase. Model has 44 rate expressions with ~ 5 constants each ~ 200 parameters What are the assumptions associated with using these expressions?
14
14 Kinetic parameter assumptions in vitro values represent the in vivo parameters –protein concentration in vitro much lower than in vivo enzyme interactions (enzymes, cytoskeleton, membrane, …) –samples used to measure kinetics may contain unknown conc. of effectors (i.e. fructose 2,6-bisphosphate) –enzyme catalyzed enzyme modifications all possible concentrations of interacting molecules been considered (interpolating) –e.g. glutamine synthase (unusually large # of known effectors) 3 substrates, 3 products, 9 significant effectors 4 15 (~10 9 ) measurements: 4 different conc. of 15 molecules (Savageau, 1976) –in vivo probably even more complex, but approximations are effective. have all interacting molecules been discovered? and so on …
15
15 Additional constraints: Physicochemical constrains Osmotic Pressure Equilibrium (interior & exterior, m chem. species) Electroneutrality (z = charge, Concentration)
16
16 RBC steady-state in vivo vs calculated |obs-calc| = Y sd(obs) X= metabolites (ordered by Y)
17
17 K A B = K AA BB Circular motion A B Return to steady state Phase plane diagrams: concentration of metabolite A vs B over a specific time course 1: conservation relationship. 2: a pair of concentrations in equilibrium 3: two dynamically independent metabolites 4: a closed loop trace 1 2 3 4
18
18 Red 0 hours Green 0.1 Blue 1.0 Yellow 10 End 300 ATP load
19
19 0 to 300 hour dynamics 34 metabolites calculated Redox Load ODE model Jamshidi et al. 2000 (Pub)(Pub)
20
20 RBC Metabolic “Machinery” Glucose Glycolysis Pyruvate Lactate ATP Nucleotide Metabolism PPP NADH 2,3 DPG Transmembrane Pumps Maintenance & Repair Oxidants Hb Met Hb 2,3 DPG HbO 2 O2O2
21
21 Cell Division Cycle G2 arrest to M arrest switch.
22
22 Hill coefficients Response R = 1 1+(K/S) H H simple hyperbolic = 1 H (R=HbO 2, S=O 2 ) sigmoidal = 2.8 H (R=Mapk-P, S=Mos) = 3 H (R=Mapk-P, S=Progesterone in vivo) = 42.
23
23 Progesterone AA Mos Mos-P Mek Mek-P Mapk Mapk-P k 1 k 2 k -1 k -2 “The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes.” Science 1998;280:895-8 Ferrell & Machleder, (Pub)(Pub) positive (a chain of enzyme modifiers close to saturation generate higher sensitivity to signals than one enzyme can)
24
24 Net1: Simulation & optimization Macroscopic continuous concentration rates –Cooperativity & Hill coefficients –Bistability Mesoscopic discrete molecular numbers –Approximate & exact stochastic Chromosome Copy Number Control Flux balance optimization –Universal stoichiometric matrix –Genomic sequence comparisons
25
25 Arkin A, Ross J, McAdams HH Genetics 1998 149(4):1633. Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected E. coli cells. Variation in level, time & whole cell effect
26
26 Efficient exact stochastic simulation of chemical systems with many species & many channels "the Next Reaction Method, an exact algorithm...time proportional to the logarithm of the number of reactions, not to the number of reactions itself". Gibson & Bruck, 1999; J. Physical Chemistry. (Pub) (Pub) Gillespie J.Phys Chem 81:2340-61. 1977. Exact stochastic simulation of coupled chemical reactions
27
27 Utilizing Noise Hasty, et al. PNAS 2000; 97:2075-2080, Noise-based switches and amplifiers for gene expression (Pub)(Pub) “ Bistability... arises naturally... Additive external noise [allows] construction of a protein switch... using short noise pulses. In the multiplicative case,... small deviations in the transcription rate can lead to large fluctuations in the production of protein”. Paulsson, et al. PNAS 2000; 97:7148-53. Stochastic focusing: fluctuation-enhanced sensitivity of intracellular regulation. (Pub) (exact master equations)(Pub)
28
28 Net1: Simulation & optimization Macroscopic continuous concentration rates –Cooperativity & Hill coefficients –Bistability Mesoscopic discrete molecular numbers –Approximate & exact stochastic Chromosome Copy Number Control Flux balance optimization –Universal stoichiometric matrix –Genomic sequence comparisons
29
29 Copy Number Control Models Replication of ColE1 & R1 Plasmids Determine the factors that govern the plasmid copy number –cellular growth rate –One way to address this question is via the use of a kinetic analysis of the replication process, and relate copy number to overall cellular growth. Why? the copy number can be an important determinant of cloned protein production in recombinant microorganisms
30
30 RNA II RNA I RNA Polymerase Rom protein RNA II RNase H DNA Polymerase ColE1 CNC mechanism Rnase H cleaved RNAII forms a primer for DNA replication RNA I "antisense" binds RNA II, blocks RNaseH
31
31 Where do we start? Dynamic mass balance What are the important parameters? Plasmid, RNA I, RNA II, Rom, All the constants degradation, initiation, inhibition RNaseH rate is very fast instantaneous DNA polymerization is very rapid Simplify by subsuming [RNA II] model RNA I inhibition RNA I and RNA II transcription is independent (neglect convergent transcription) Rom protein effects constant Consider 2 species: RNA I and plasmid Many more assumptions... Assumptions?
32
32 Dynamic Mass Balance: ColE1 RNAI [concentration in moles/liter] Rate of change of [RNA I] Synthesis of RNA I Degradation of RNA I Dilution due to cell growth =-- R = [RNA I] k 1 = rate of RNA I initiation N = [plasmid] k d = rate of degradation = growth rate Keasling,& Palsson (1989) J theor Biol 136, 487-492; 141, 447-61.
33
33 Rate of change of [N] Plasmid Replication Dilution due to cell growth =- R = [RNA I] k 2 = rate of RNA II initiation N = [plasmid] K I = RNA I/RNA II binding constant (an inhibition constant) = growth rate Solve for N(t). Dynamic Mass Balance: ColE1 Plasmid
34
34 Mathematica ODE program Formulae for steady state start at mu=1 shift to mu=.5 and then solve for plasmid concentration N as a function of time.
35
35 Stochastic models for CNC Paulsson & Ehrenberg, J Mol Biol 1998;279:73-88. Trade-off between segregational stability and metabolic burden: a mathematical model of plasmid ColE1 replication control. (Pub),(Pub) J Mol Biol 2000;297:179-92. Molecular clocks reduce plasmid loss rates: the R1 case. (Pub)(Pub) While copy number control for ColE1 efficiently corrects for fluctuations that have already occurred, R1 copy number control prevents their emergence in cells that by chance start their cycle with only one plasmid copy. Regular, clock- like, behaviour of single plasmid copies becomes hidden in experiments probing collective properties of a population of plasmid copies... The model is formulated using master equations, taking a stochastic approach to regulation”
36
36 e.g. E. coli ? What are the difficulties? The number of parameters Measuring the parameters Are parameters measured in vitro representative to the parameters in vivo From RBC & CNC to models for whole cell replication?
37
37 Factors Constraining Metabolic Function Physicochemical factors: –Mass, energy, and redox balance: Systemic stoichiometry –osmotic pressure, electroneutrality, solvent capacity, molecular diffusion, thermodynamics –Non-adjustable constraints System specific factors: –Capacity: Maximum fluxes –Rates: Enzyme kinetics –Gene Regulation –Adjustable constraints
38
38 Net1: Simulation & optimization Macroscopic continuous concentration rates –Cooperativity & Hill coefficients –Bistability Mesoscopic discrete molecular numbers –Approximate & exact stochastic Chromosome Copy Number Control Flux balance optimization –Universal stoichiometric matrix –Genomic sequence comparisons
39
39 Dynamic mass balances on each metabolite Time derivatives of metabolite concentrations are linear combination of the reaction rates. The reaction rates are non- linear functions of the metabolite concentrations (typically from in vitro kinetics). Where v j is the jth reaction rate, b is the transport rate vector, S ij is the “Stoichiometric matrix” = moles of metabolite i produced in reaction j V syn V deg V trans V use
40
40 Flux-Balance Analysis Make simplifications based on the properties of the system. –Time constants for metabolic reactions are very fast (sec - min) compared to cell growth and culture fermentations (hrs) –There is not a net accumulation of metabolites in the cell over time. One may thus consider the steady-state approximation.
41
41 Removes the metabolite concentrations as a variable in the equation. Time is also not present in the equation. We are left with a simple matrix equation that contains: –Stoichiometry: known –Uptake rates, secretion rates, and requirements: known –Metabolic fluxes: Can be solved for! In the ODE cases before we already had fluxes (rate equations, but lacked C(t). Flux-Balance Analysis
42
42 Additional Constraints –Fluxes >= 0 (reversible = forward - reverse) –The flux level through certain reactions is known –Specific measurement – typically for uptake rxns –maximal values –uptake limitations due to diffusion constraints –maximal internal flux
43
43 Flux Balance Example A 2C B RCRC RBRB RARA x1x1 x2x2 Flux Balances: A: R A – x 1 – x 2 = 0 B: x 1 – R B = 0 C: 2 x 2 – R C = 0 Supply/load constraints: R A = 3 R B = 1 Equations: A: x 1 +x 2 = 3 B: x 1 = 1 C: 2 x 2 – R C = 0
44
44 FBA Example A 2C B 4 1 3 1 2
45
45 FBA Often, enough measurements of the metabolic fluxes cannot be made so that the remaining metabolic fluxes can be calculated. Now we have an underdetermined system –more fluxes to determine than mass balance constraints on the system –what can we do?
46
46 Incomplete Set of Metabolic Constraints Identify a specific point within the feasible set under any given condition Linear programming - Determine the optimal utilization of the metabolic network, subject to the physicochemical constraints, to maximize the growth of the cell Flux A Flux B Flux C Assumption: The cell has found the optimal solution by adjusting the system specific constraints (enzyme kinetics and gene regulation) through evolution and natural selection. Find the optimal solution by linear programming
47
47 Under-Determined System All real metabolic systems fall into this category, so far. Systems are moved into the other categories by measurement of fluxes and additional assumptions. Infinite feasible flux distributions, however, they fall into a solution space defined by the convex polyhedral cone. The actual flux distribution is determined by the cell's regulatory mechanisms. It absence of kinetic information, we can estimate the metabolic flux distribution by postulating objective functions(Z) that underlie the cell’s behavior. Within this framework, one can address questions related to the capabilities of metabolic networks to perform functions while constrained by stoichiometry, limited thermodynamic information (reversibility), and physicochemical constraints (ie. uptake rates)
48
48 FBA - Linear Program For growth, define a growth flux where a linear combination of monomer (M) fluxes reflects the known ratios (d) of the monomers in the final cell polymers. A linear programming finds a solution to the equations below, while minimizing an objective function (Z). Typically Z= growth (or production of a key compound). i reactions
49
49 Very simple LP solution AB RARA x1x1 x2x2 RBRB D C Flux Balance Constraints: R A = R B R A < 1 x 1 + x 2 < 1 x 1 >0 x 2 > 0 Feasible flux distributions x1x1 x2x2 Max Z = Max R D Production Max Z = R C Production RCRC RDRD
50
50 Applicability of LP & FBA Stoichiometry is well-known Limited thermodynamic information is required –reversibility vs. irreversibility Experimental knowledge can be incorporated in to the problem formulation Linear optimization allows the identification of the reaction pathways used to fulfil the goals of the cell if it is operating in an optimal manner. The relative value of the metabolites can be determined Flux distribution for the production of a commercial metabolite can be identified. Genetic Engineering candidates
51
51 Precursors to cell growth How to define the growth function. –The biomass composition has been determined for several cells, E. coli and B. subtilis. This can be included in a complete metabolic network –When only the catabolic network is modeled, the biomass composition can be described as the 12 biosynthetic precursors and the energy and redox cofactors
52
52 in silico cells E. coliH. influenzaeH. pylori Genes 695362 268 Reactions 720488 444 Metabolites 436343 340 (of total genes 4300 1700 1800) Edwards, et al 2002. Genome-scale metabolic model of Helicobacter pylori 26695. J Bacteriol. 184(16):4582-93. Segre, et al, 2002 Analysis of optimality in natural and perturbed metabolic networks. PNAS 99: 15112-7. ( Minimization Of Metabolic Adjustment ) http://arep.med.harvard.edu/moma/
53
53 EMP RBC, E.coliRBCE.coli KEGG, Ecocyc Where do the Stochiometric matrices (& kinetic parameters) come from?
54
54 ACCOA COA ATP FAD GLY NADH LEU SUCCOA metabolites coeff. in growth reaction Biomass Composition
55
55 Flux ratios at each branch point yields optimal polymer composition for replication x,y are two of the 100s of flux dimensions
56
56 Minimization of Metabolic Adjustment (MoMA)
57
57 Flux Data
58
58 050100150200 0 20 40 60 80 100 120 140 160 180 200 1 2 3 4 56 7 8 9 10 11 12 1314 15 16 1718 -50050100150200250 -50 0 50 100 150 200 250 1 2 3 4 56 7 8 9 10 11 12 1314 15 16 17 18 Experimental Fluxes Predicted Fluxes -50050100150200250 -50 0 50 100 150 200 250 1 2 3 4 56 7 8 9 10 11 12 13 14 15 16 1718 pyk (LP) WT (LP) Experimental Fluxes Predicted Fluxes Experimental Fluxes Predicted Fluxes pyk (QP) =0.91 p=8e-8 =-0.06 p=6e-1 =0.56 P=7e-3 C009-limited
59
59 Flux data (MOMA & FBA)
60
60 Replication rate of a whole-genome set of mutants Badarinarayana, et al. (2001) Nature Biotech.19: 1060
61
61 Reproducible selection? Correlation between two selection experiments Badarinarayana, et al. (2001) Nature Biotech.19: 1060
62
62 Competitive growth data 2 p-values 4x10 -3 1x10 -5 Novel position effects Novel redundancies 487 mutants multiplexed & modeled on minimal media negative small selection effect Badarinarayana, et al. Nature Biotech 19: 1060-5
63
63 Replication rate challenge met: multiple homologous domains 123 123 thrA metL 1.16.7 1.8 12 lysC 10.4 probes Selective disadvantage in minimal media
64
64 Net1: Simulation & optimization Macroscopic continuous concentration rates –Cooperativity & Hill coefficients –Bistability Mesoscopic discrete molecular numbers –Approximate & exact stochastic Chromosome Copy Number Control Flux balance optimization –Universal stoichiometric matrix –Genomic sequence comparisons
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.