Download presentation
Presentation is loading. Please wait.
1
Synthesis, Characterization and Catalytic Application of Gold Nanoparticles-Supported Ni(II) Complex Catalyst Synthesis, Characterization and Catalytic Application of Gold Nanoparticles-Supported Ni(II) Complex Catalyst 演講者 : 黃仁鴻 指導老師 : 于淑君 博士
2
2 Characteristics of catalystsHomogenousHeterogeneousHybrid Cat. structureKnownUnknownKnown Catalyst modificationEasyDifficultEasy ActivityHighLowHigh SelectivityHighLowHigh Conditions of catalysisMildHarshMild Poisoning of cat.High riskLow risk Mechanical strengthLowHigh Cat. stabilitiesLowHigh Separation & recycle of cat. DifficultEasy IndustrializationDifficultAccessible Types of Catalysts
3
3 Chem. Rev. 2002, 102, 3275-3300. Polystyrene-Supported Catalysts
4
4 Silica-Supported Catalysts Chem. Rev. 2002, 102, 3495-3524.
5
5 Nanoparticles-Supported Catalysts Pfaltz, A. J. Am. Chem. Soc. 2005, 127, 8720-8731.
6
6 a. Oxidation b. Metal Leaching The Limitation of Phosphine Ligand Kinzel, E. J. Chem. Soc. Chem. Commun. 1986 1098.
7
7 Bipyridine Ligand Buchmeiser, F. M. R. J. Am. Chem. Soc. 1998, 120, 2790. Poly(N,N-bipyridyl-endo-norborn-2-ene-5-carbamide) 10
8
8 Motivation ► Nickel is less expensive than other transition metal. ► To study the immobilization of molecular Ni(II) complexes on the surfaces of Au NPs by using the covalent techniques via a specially designed bipyridine ligand as spacer linkers. ► To investigate the reactivity of hybrid catalyst of this type and look into any possibility of reactivity changes due to the process of immobilization.
9
9 nanoparticles with controllable solubility soluble metal complex functional groups coordinationl ligands spacer linker Catalyst Design Au NPs have been known not only to possess solid surfaces resembling the (1 1 1) surface of bulk gold but also to behave like soluble molecules for their dissolvability, precipitability, and redissolvability. Lin, Y.-Y; Tsai, S.-C.; Yu, S. J. J. Org. Chem. 2008, 73, 4920-4928.
10
10 Comparison of M 2+ (d 8 species) Square Planar vs. Tetrahedral Complexes Greenwood, Chemistry of the elements, Elsevier Science, 1997; p. 1347 Ni => small Δ t => tetrahedral & square planar Pd & Pt => large Δ sp => square planar Ligands => large, weak-field => tetrahedral Ligands => small, strong-field => square planar
11
11 R. G. Hayter, F. S. Humiec. Inorg. Chem. 1965, 12, 1701-1706. Square Planar-Tetrahedral Isomerism of Nickel Halide Complexes of Ni(PPh 2 R) 2 X 2 The tetrahedral structure is increasingly favored in the orders P(C 2 H 5 ) 3 < P(C 2 H 5 ) 2 C 6 H 5 < PC 2 H 5 (C 6 H 5 ) 2 < P(C 6 H 5 ) 3 -Steric effect SCN < Cl < Br < I -Due to the crystal field strength of the ligand decreases
12
12 Square Planar and Tetrahedral Structures of Ni[P(CH 2 Ph)Ph 2 ] 2 Br 2 Kilbourn. B. T.; Powell. H. M. J. Chem. Soc. (A), 1970, 1688-1693. Tetrahedral Square-Planar
13
13 Synthesis of Spacer-Linker
14
14 Synthesis of the RS-Au-L-NiBr 2 (7)
15
15 Synthesis of Molecular Ni(II)-Catalyst 江柏誼碩士論文 2008
16
16 1 H NMR Spectra of Au NPs 6 and 7 * * # # d 6 -DMSO RS-Au-L (6) RS-Au-L-NiBr2 (7) H2OH2O
17
17 EPR Spectrum of RS-Au-L-NiBr 2 (7) RS-Au-L-NiBr 2 (7)[Et 4 N] 2 [NiCl 4 ] Okada, K.; Matsushita, F.; Hayashi S. Clay Minerals 1997, 32, 299-305. (powder, 77K, g = 2.55) g = 2.68
18
18 TEM Image of Octanethiol Protected Au-SR (5) Particle size distribution 4.4 ± 0.6 nm
19
19 TEM Image of RS-Au-L (6) Particle size distribution 4.6 ± 0.6 nm
20
20 TEM Image of RS-Au-L-NiBr 2 (7) Particle size distribution 4.9 ± 0.6 nm
21
21 UV-vis Spectra of Ligand 4, and Au Nanoparticles 5, 6 and 7 257 nm 517 nm
22
22 IR Spectra of 4, 6 and 7 1576 cm -1 1590 cm -1
23
23 IR Spectra of 4, 6 and 7 in the ν SH Region
24
24 XPS Data of RS-Au-L-NiBr 2 (7) 83.9 87.6 4f 5/2 4f 7/2 855.2 872.9 2p 1/2 2p 3/2
25
25 Acetalization and Thioacetalization of Carbonyl Compounds
26
26 Corey-Seebach Reaction Seebach, D.; Jones, N. R.; Corey, E. J. J. Org. Chem. 1968, 33, 300-105. n=2-6 Base
27
27 Lewis Acid Catalyzed Thioacetalization Conventional Lewis Acids BF 3 -Et 2 O 、 ZnCl 2 、 AlCl 3 、 SiCl 4 、 LiOTf 、 InCl 3 Nakata, T. et. al., Tetrahedron Lett. 1985, 26, 6461-6464. Evans, D. V. et. al., J. Am. Chem. Soc. 1977, 99, 5009-5017. Firouzabadi, H. et. al., Bull. Chem. Soc. Jpn. 2001, 74, 2401-2406. Transition Metal Lewis Acids TiCl 4 、 WCl 6 、 CoCl 2 、 Sc(OTf) 3 、 MoCl 5 、 NiCl 2 Kumar, V. et. al., Tetrahedron Lett. 1983, 24, 1289-1292. Firouzabadi, H. et., al. Synlett 1998, 739-741. Goswami, S. et. al., Tetrahedron Lett. 2008, 49, 3092-3096. Lanthanide Metal Lewis Acids Lu(OTf) 3 、 Nd(OTf) 3 Kanta, D. S. J. Chem. Res. Synop. 2004,230-231. Kanta, D. S. Synth. Commun. 2004, 34, 230-231.
28
28 Nickel(II) Chloride Catalyzed Thioacetalization 2.5 hour 96 % A. T. Khan et al., Tetrahedron Lett. 2003, 44, 919–922. One use only 10 mole % NiCl 2
29
29 Entry Time Yield(%) 1 2 min>99 240 min96 310 min98 42 hr88 Entry Time Yield(%) 5 5 hr92 615 hr80 73 hr92 81.5 hr89
30
30 Entry Time Yield(%) 9 2 hr89 1060 min98 114.5 hr86 1260 min89 Entry Time Yield(%) 13 4.5 hr70 1460 min94
31
31 Entry Time Yield(%) 15 5 min>99 162.5 hr97 1730 min93 184.5 hr84 Entry Time Yield(%) 19 15 hr88 2018 hr60 216.5 hr83 222.5 hr88
32
32 Entry Time Yield(%) 23 2 hr88 2430 min90 254.5 hr75 2630 min88 Entry Time Yield(%) 27 5.5 hr80 2830 min92
33
33 EntryThiol Time Yield(%) 29 30 min99 3060 min93 315 min96 3210 min95
34
34 Entry Time Yield (%) Paper Reported cat. (NiCl 2 ) Time Yield (%) 8 1.5 hr892.75 hr96 12 min>998 min96 310 min9845 min90 55 hr9320 hr82
35
35 Entry Time Yield (%) Paper Reported cat. (NiCl 2 ) Time Yield (%) 22 2.5 hr882.5 hr94 155 min>9930 min93 1730 min931.15 hr89 1915 hr88
36
36 Comparison of Catalytic Activity Amoung Various Different Catalysts EntryCat.TimeYield (%) Aliterature ( NiCl 2 anhydrous)30 min93 BNONE24 hr96 C[HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiBr 2 5 min>99 DRS-Au-L-NiBr 2 (7)5 min>99
37
37 Recycling Tests on Cat. 7 for Thioacetalization of Aldehyde No metal leaching !! Recycling NO. Time (hr) Yield (%) 1194 2196 3197 4196 51 6197 7196 81 9193 10193 11192 Filtrate no further reactivity AA has no signal
38
38 Proposed Mechanism of Thioacetalization δ
39
39 Sythesis of α-Aminonitrile De, S. K. J. Mol. Catal. A: Chem. 2005, 225, 169-171. 6 ~ 18 hr, 73% ~ 92%
40
40 The Various Modes of α-Aminonitrile Reactivity Enders, D.; Shilvock, J. P. Chem. Soc. Rev. 2000, 29, 359-373.
41
41 Lewis Acid Catalyzed α-Aminonitrile Lewis acid catalysts Et 3 N 、 InCl 3 、 Ga(OTf) 3 、 BiCl 3 Paraskar, A. S.; Sudalai, A. Tetrahedron Lett. 2006, 47, 5759-5762. Ranu, B. C.; Dey, S. S.; Hajra, A. Tetrahedron 2002, 58, 2529-2532. Surya Prakash, G. K.; Mathew, T. ; Panja, C.; Alconcel, S.; Vaghoo, H.; Do, C.; Olah, G. A. PNAS 2007, 104, 3703-3706. De, S. K. ; Gibbs, R. A. Tetrahedron Lett. 2004, 45, 7407-7408. Transition metal Lewis acid catalysts RuCl 3 、 NiCl 2 、 Sc(OTf) 3 、 Cu(OTf) 2 De, S. K. Synth. Commun. 2005, 35, 653-656. De, S. K. J. Mol. Catal. A: Chem. 2005, 225, 169-171. Lanthanide Lewis acid catalysts Pr(OTf) 3 、 La(O-i-Pr) 、 Yb(OTf) 3 De, S. K. Synth. Commun. 2005, 35, 961-966. Others KSF 、 I 2 Yadav, J. S.; Subba Reddy, B. V.; Eeshwaraiah B.; Srinivas, M. Tetrahedron 2004, 60, 1767-1771. Royer, L.; De, S. K.; Gibbs, R. A. Tetrahedron Lett. 2005, 46, 4595-4597.
42
42 >99105 88104 95153 97152 98151 Yield (%) Time (min) R 1 NH 2 Entry
43
43 Proposed Mechanism of α-Aminonitrile
44
44 Conclusions 1. We have successfully synthesized an air- and water-stable and efficient interphase catalyst {Au NPs-S(CH 2 ) 11 N(H)P(O)(2-py) 2 NiBr 2 }. 2.We use NMR 、 TEM 、 UV 、 IR 、 EPR and XPS for structural characterization of The Au NPs- Ni(II) catalyst. 3.The Au NPs-Ni(II) catalyst can be quantitatively recovered and effectively recycled for more than 11 times without any loss of reactivity.
45
45
46
46
47
47 SQUID Tetrahedral μ eff = 2.92 The Organometallic Chemistry of The Transition Metals. 2005 EPR and SQUID of HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiBr 2 EPR g = 2.18 江柏誼碩士論文 2008
48
48
49
49 SUQID of HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiBr 2 χ = m / H χ m = (χ / W) × M μ eff = (3k / Nβ2)1/2(χmT)1/2 = 2.828(χ m T) 1/2 m :磁矩, H :外加磁場 (10000 guess), χ :磁化率 χ m :莫耳磁化率, W :樣品重量, M :樣品分子量 μ eff :有效磁矩, T : 溫度, β :波耳磁元 K :波茲曼常數, N : 6.02 x 1023 slope = 1/(χ m T) = 0.936 χ m T = 1/0.936 μ eff = 2.828 (χ m T) 1/2 μ eff = 2.92
50
50 (L)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.