Download presentation
Presentation is loading. Please wait.
1
Tales of Time Scales Ward Whitt AT&T Labs – Research Florham Park, NJ
2
New Book Stochastic-Process Limits An Introduction to Stochastic-Process Limits and Their Application to Queues Springer 2001
3
“I won’t waste a minute to read that book.” - Felix Pollaczek
4
“Ideal for anyone working on their third Ph.D. in queueing theory” - Agner Krarup Erlang
5
Flow Modification
7
Multiple Classes Single Server 1 2 m m
8
Whitt, W. (1988) A light-traffic approximation for single-class departure processes from multi-class queues. Management Science 34, 1333-1346. Wischik, D. (1999) The output of a switch, or, effective bandwidths for networks. Queueing Systems 32, 383-396.
9
M/G/1 Queue in a Random Environment Let the arrival rate be a stochastic process with two states. MMPP/G/1 is a special case.
10
environment state 1 2 mean holding time (in environment state) arrival rate mean service time Overall Traffic Intensity = 0.57 15 0.92 0.50 1 1
11
environment state 1 2 mean holding time (in environment state) arrival rate mean service time Overall Traffic Intensity = 0.75 15 2.00 0.50 1 1
12
A Slowly Changing Environment
13
environment state 1 2 mean holding time (in environment state) arrival rate mean service time Overall Traffic Intensity = 0.57 1M1M5M5M 0.92 0.50 1 1
14
What Matters? Environment Process? Arrival and Service Processes? M?
15
Nearly Completely Decomposable Markov Chains P. J. Courtois, Decomposability, 1977
16
What if the queue is unstable in one of the environment states?
17
environment state 1 2 mean holding time (in environment state) arrival rate mean service time Overall Traffic Intensity = 0.75 1M1M5M5M 2.00 0.50 1 1
18
What Matters? Environment Process? Arrival and Service Processes? M?
19
Change Time Units Measure time in units of M i.e., divide time by M
20
environment state 1 2 mean holding time (in environment state) arrival rate mean service time Overall Traffic Intensity = 0.75 15 2.00M 0.50M 1/M
21
Workload in Remaining Service Time With Deterministic Holding Times 1
22
Steady-state workload tail probabilities in the MMPP/G/1 queue 0.402600.137390.046950.01604 0.411000.143500.050400.01770 0.442460.161680.061190.02316 0.522160.230020.010870.05168 0.373760.114180.034880.01066 0.373830.114250.034920.01067 0.376700.116690.036140.01120 0.384660.123980.039970.01289 0.370750.111830.033730.01017 0.370820.111890.033760.01019 0.371050.112080.033850.01023 0.371860.112810.034220.01038 0.370440.111590.033620.01013 0.370450.111600.033620.01013 0.370470.111640.033630.01013 0.370550.111690.033660.01015 size factor M service-time distribution
23
G. L. Choudhury, A. Mandelbaum, M. I. Reiman and W. Whitt, “Fluid and diffusion limits for queues in slowly changing environments.” Stochastic Models 13 (1997) 121-146.
24
Thesis: Heavy-traffic limits for queues can help expose phenomena occurring at different time scales. Asymptotically, there may be a separation of time scales.
25
Network Status Probe
26
Heavy-Traffic Perspective Snapshot Principle n -H W n (nt) W(t) 0 < H < 1 n = (1 - ) -1/(1-H)
27
Server Scheduling Multiple Classes Single Server With Delay and Switching Costs
28
Heavy-Traffic Limit for Workload W n W W n (t) = n -H W n (nt) 0 < H < 1 n = (1 - ) -1/(1-H)
29
One Approach: Polling Multiple Classes Single Server
30
Heavy-Traffic Averaging Principle h -1 f( W i,n (t)) dt h -1 ( f(a i u W (t)) du ) dt W i,n (t) = n -H W i,n (nt)
31
Coffman, E. G., Jr., Puhalskii, A. A. and Reiman, M. I. (1995) Polling systems with zero switchover times: a heavy-traffic averaging principle. Ann. Appl. Prob. 5, 681-719. Markowitz, D. M. and Wein, L. M. (2001) Heavy-traffic analysis of dynamic cyclic policies: a unified treatment of the single machine scheduling problem. Operations Res. 49, 246- 270. Kushner, H. J. (2001) Heavy Traffic Analysis of Controlled Queueing and Communication Networks, Springer, New York.
32
“My thesis has been that one path to the construction of a nontrivial theory of complex systems is by way of a theory of hierarchy.” - H. A. Simon Holt, Modigliani, Muth and Simon, Planning Production, Inventories and Workforce, 1960. Simon and Ando, Aggregation of variables in dynamic systems. Econometrica, 1961. Ando, Fisher and Simon, Essays on the Structure of Social Science Models, 1963.
34
Application to Manufacturing MRP
35
mrp MRP material requirements planning Manufacturing Resources Planning Management information system Expand bill of materials Orlicky (1975) Long-Range Planning (Strategic) Intermediate-Range Planning (Tactical) Short-Term Control (Operational)
36
Hierarchical Decision Making in Stochastic Manufacturing Systems - Suresh P. Sethi and Qing Zhang, 1994
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.