Presentation is loading. Please wait.

Presentation is loading. Please wait.

Generating Summaries and Visualization for Large Collections of Geo-referenced Photographs Alexander Jaffe*, Mor Naaman*, Tamir Tassa †, Marc Davis $ *Yahoo!

Similar presentations


Presentation on theme: "Generating Summaries and Visualization for Large Collections of Geo-referenced Photographs Alexander Jaffe*, Mor Naaman*, Tamir Tassa †, Marc Davis $ *Yahoo!"— Presentation transcript:

1 Generating Summaries and Visualization for Large Collections of Geo-referenced Photographs Alexander Jaffe*, Mor Naaman*, Tamir Tassa †, Marc Davis $ *Yahoo! Research Berkeley † Open University of Israel $ Yahoo! Research

2 Generating Summaries - Mor Naaman 2 Attraction Map of Paris Stanley Milgram, 1976. Psychological Maps of Paris

3 Generating Summaries - Mor Naaman 3 Attraction Map of London Jaffe et al, 2006.

4 Generating Summaries - Mor Naaman 4 Information Overload? Flickr “geotagged”

5 Generating Summaries - Mor Naaman 5 Overview Problem definition Intuition for solution Algorithm for summarization Visualizing the dataset Evaluation Demo?

6 Generating Summaries - Mor Naaman 6 Problem Definition Dataset: (photo_id, user_id, latitude, longitude) (photo_id, tag) Result: (photo_id, rank) Given all photos from a geographic region, find a “representative” summary set

7 Generating Summaries - Mor Naaman 7 Issues to Tackle Noisy data Whatever, color, city, spectrum, santa barbara, california, usa, Lookatme, Herbert Bayer Chromatic Gate Photographer biases –In locations –In Tags Wrong data

8 Generating Summaries - Mor Naaman 8 Intuition More “activity” in a certain location indicates importance of that location Tag that are unique to a certain location can suggest importance of that location

9 Generating Summaries - Mor Naaman 9 (Very) Simple Example

10 Generating Summaries - Mor Naaman 10 Algorithm Overview 1.Hierarchical Clustering of the location data 2.For each cluster, generate cluster score 3.Recursively generate ordering of all photos in each cluster, based on subcluster score and ordering

11 Generating Summaries - Mor Naaman 11 The Clustered Return of the (Very) Simple Example! 4, 6, 5 8,7 4,8,6,5,7 2010

12 Generating Summaries - Mor Naaman 12 Generating a Summary A complete ranking is produced for all photos in the dataset An n-photo summary is simply the first n photos in this ranking.

13 Generating Summaries - Mor Naaman 13 Generating Cluster Scores Main Factors: –Number of photos –Relevance (bias) factors –“Tag Distinguishability” –“Photographer Distinguishability”

14 Generating Summaries - Mor Naaman 14 Tag Distinguishability A measure of uniqueness of concepts represented in the cluster (“document”) TF/IDF based –Compute frequency of each tag (TF) –Compute (inverse) frequency of tag in the rest of the dataset (IDF) –Aggregate TF/IDF over all tags in cluster using L2 norm Or, if you like formulas: Read the damn paper!

15 Generating Summaries - Mor Naaman 15 Summary of San Francisco Golden Gate BridgeTransAmerica AT&T Baseball Park Golden Gate Twin Peaks Golden Gate Bay Bridge Ocean Beach Chinatown

16 Generating Summaries - Mor Naaman 16 Progress Bar (almost done) Problem definition Intuition for solution Algorithm for summarization Visualizing the dataset Evaluation Demo?

17 Generating Summaries - Mor Naaman 17 Tag Maps Observation: –The algorithm identifies “representative” locations –The algorithm identifies unique, important tags Can be used to visualize the dataset!

18 Generating Summaries - Mor Naaman 18 Tag Maps

19 Generating Summaries - Mor Naaman 19 Tag Maps

20 Generating Summaries - Mor Naaman 20 Ok, how do we evaluate this? Direct human-evaluation of algorithmic results –Evaluated Tag Maps with various weighting options –Compared summaries to 3 base conditions Compared chosen locations to top 15 locations selected by humans (Milgram- style)

21 Generating Summaries - Mor Naaman 21 Maybe we have time for a demo

22 Generating Summaries - Mor Naaman 22 Maybe we have time for Q’s http://zonetag.research.yahoo.com (applied in prototype cameraphone app) http://blog.yahooresearchberkeley.com (more on this and other topics)


Download ppt "Generating Summaries and Visualization for Large Collections of Geo-referenced Photographs Alexander Jaffe*, Mor Naaman*, Tamir Tassa †, Marc Davis $ *Yahoo!"

Similar presentations


Ads by Google