Download presentation
Presentation is loading. Please wait.
1
Reducing Tile Complexity for Self-Assembly Through Temperature Programming Symposium on Discrete Algorithms SODA 2006 January 23, 2006 Robert Schweller Northwestern University In collaboration with Ming-Yang Kao Northwestern University
2
Tile Model of Self-Assembly (Rothemund, Winfree STOC 2000) Tile System: t : temperature, positive integer G: glue function T: tileset s: seed tile
3
How a tile system self assembles T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2
4
How a tile system self assembles T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2
5
How a tile system self assembles T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2
6
How a tile system self assembles T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2
7
How a tile system self assembles T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2
8
How a tile system self assembles T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2
9
How a tile system self assembles T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2
10
How a tile system self assembles T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2
11
How a tile system self assembles T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2
12
Each Shape Requires a Distinct Tile Set
13
Programmable, General Purpose Tile Set?
14
...
15
Multiple Temperature Model - temperature may go up and down (Aggarwal, Cheng, Goldwasser, Kao, Espanes, Schweller, SICOMP 2005)
16
Multiple Temperature Model - temperature may go up and down t (Aggarwal, Cheng, Goldwasser, Kao, Espanes, Schweller, SICOMP 2005)
17
Multiple Temperature Model - temperature may go up and down t (Aggarwal, Cheng, Goldwasser, Kao, Espanes, Schweller, SICOMP 2005) Tile Complexity:Number of Tiles Temperature Complexity:Number of Temperatures
18
Building k x N Rectangles k-digit, base n (1/k) counter: k n
19
Building k x N Rectangles k-digit, base n (1/k) counter: Tile Complexity: n k
20
two temperatures 3 3 3 1 t = 4 n
21
t = 4 6 two temperatures n
22
Programmable, General Purpose Tile Set?...
23
Given: n 1011001 log n High Level Approach
24
Given: n 1011001 log n temp High Level Approach 1
25
Given: n 1011001 log n temp High Level Approach 1 1
26
Given: n 1011001 log n temp High Level Approach 10 10
27
Given: n 1011001 log n temp High Level Approach 1011... 0 1011010
28
temp High Level Approach 01... 1011010 0
29
temp High Level Approach 01... 1011010 0
30
temp High Level Approach 01... 1011010 0
31
Assembly of n x n Squares N - k k
32
Assembly of n x n Squares n - k k
33
Assembly of n x n Squares n - k k
34
Assembly of n x n Squares n - k k Complexity:
35
Assembly of n x n Squares n – log n log n Complexity:
36
Assembly of n x n Squares n – log n log n Complexity: seed row
37
Encoding a Single Bit 0 a Z g z g g g g g g g g g 01 0’1’ zz 1 0 1
38
a Encoding a Single Bit 0 a Z g z g g g g g g g g g 01 0’1’ zz 1 0 1 t =
39
a Encoding a Single Bit 0 a Z g z g g g g g g g g g 01 0’1’ zz 1 0 1 t =
40
a Encoding a Single Bit 0 a Z g z g g g g g g g g g 01 0’1’ zz 1 0 1 t =
41
a Encoding a Single Bit 0 a Z g z g g g g g g g g g 01 0’1’ zz 1 0 1 t =
42
a Encoding a Single Bit 0 a Z g z g g g g g g g g g 01 0’1’ zz 1 0 1 t =
43
a Encoding a Single Bit 0 a Z g z g g g g g g g g g 01 0’1’ zz 1 0 1 t = 1
44
a Encoding a Single Bit 0 a Z g z g g g g g g g g g 01 0’1’ zz 1 0 1 t = 0 1
45
a Encoding a Single Bit 0 a Z g z g g g g g g g g g 01 0’1’ zz 1 0 1 t = 0
46
a Encoding a Single Bit 0 a Z g z g g g g g g g g g 01 0’1’ zz 1 0 1 t = 0 0’ z
47
a Encoding a Single Bit 0 a Z g z g g g g g g g g g 01 0’1’ zz 1 0 1 t = 0 0’ Z
48
a Encoding a Single Bit 0 a Z g z g g g g g g g g g 01 0’1’ zz 1 0 1 t = 0 0’ Z
49
a Encoding a Single Bit 0 a Z g z g g g g g g g g g 01 0’1’ zz 1 0 1 t = 0 0’ Z
50
a Encoding a Single Bit 0 a Z g z g g g g g g g g g 01 0’1’ zz 1 0 1 t = 0 0’ Z
51
a Encoding a Single Bit 0 a Z g z g g g g g g g g g 01 0’1’ zz 1 0 1 t = 0 0’ Z
52
a Encoding a Single Bit 0 a Z g z g g g g g g g g g 01 0’1’ zz 1 0 1 t = 0 0’ Z
53
a Encoding a Single Bit 0 a Z g z g g g g g g g g g 01 0’1’ zz 1 0 1 t = 0 0’ Z x
54
a Encoding a Single Bit 0 a Z g z g g g g g g g g g 01 0’1’ zz 1 0 1 t = 0 0’ Z 1
55
a Encoding a Single Bit 0 a Z g z g g g g g g g g g 01 0’1’ zz 1 0 1 t = Z 1 1’ z
56
a Encoding a Single Bit 0 a Z g z g g g g g g g g g 01 0’1’ zz 1 0 1 t = Z 1’
57
a Encoding a Single Bit 0 a Z g z g g g g g g g g g 01 0’1’ zz 1 0 1 t = Z 1’ 1
58
a Encoding a Single Bit 0 a Z g z g g g g g g g g g 01 0’1’ zz 1 0 1 t = Z 1’ 1 a Z t = 0 0’
59
Goal: 1 0 1 0 0
60
a 0 s b temp:
61
a 1 s b Goal: 1 0 1 0 0 temp:
62
a 1 s Goal: 1 0 1 0 0 b X temp:
63
a 1 s Goal: 1 0 1 0 0 b Y temp:
64
a 1 s Goal: 1 0 1 0 0 b Y temp: a b
65
a 1 s Goal: 1 0 1 0 0 b Y temp: a b 0
66
a 1 s Goal: 1 0 1 0 0 b Y temp: a b 0 X
67
a 1 s Goal: 1 0 1 0 0 b Y temp: a b 0 Y a b
68
a 1 s Goal: 1 0 1 0 0 b Y temp: a b 0 Y a b 0
69
a 1 s Goal: 1 0 1 0 0 b Y temp: a b 0 Y a b 1
70
a 1 s Goal: 1 0 1 0 0 b Y temp: a b 0 Y a b 1 X
71
a 1 s Goal: 1 0 1 0 0 b Y temp: a b 0 Y a b 1 Y a b
72
a 1 s Goal: 1 0 1 0 0 b Y temp: a b 0 Y a b 1 Y a b 0
73
a 1 s Goal: 1 0 1 0 0 b Y temp: a b 0 Y a b 1 Y a b 0 X
74
a 1 s Goal: 1 0 1 0 0 b Y temp: a b 0 Y a b 1 Y a b 0 Y a b
75
a 1 s Goal: 1 0 1 0 0 b Y temp: a b 0 Y a b 1 Y a b 0 Y a b 0
76
a 1 s Goal: 1 0 1 0 0 b Y temp: a b 0 Y a b 1 Y a b 0 Y a b 0 X
77
1 1 0 0 1 0 0 0 1 1 1 0 1 1
78
1 1 0 0 1 0 0 0 1 1 1 1 0 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 1 1 0 0 1 0 0 0 1 1 1 1 1 0 1 1 0 0 1 0 0 0 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0
79
Assembly of n x n Squares n – log n log n
80
Assembly of n x n Squares O(log n)
81
Assembly of n x n Squares O(log n)
82
Results tile complexitytemperature complexity O(1) O(log n) O(1) (our paper) ( Adleman, Cheng, Goel, Huang STOC 2001 ) n x n squares
83
Results tile complexitytemperature complexity O(1) O(log n) O(1) (our paper) ( Adleman, Cheng, Goel, Huang STOC 2001 ) ? < log n Smooth Trade off? ? < n x n squares
84
Results tile complexitytemperature complexity O(1) O(log n) O(1) (our paper) ( Adleman, Cheng, Goel, Huang STOC 2001 ) ? < log n Smooth Trade off? ? < For almost all n, no tileset can achieve both o(log n/ loglog n) tile complexity and o(log n) temperature complexity simultaneously n x n squares
85
Further Research Lab Experiments Temperature Programming for more general classes of shapes Uncontrolled, Fluctuating Temperatures
86
Thanks for Listening Questions? http://www.cs.northwestern.edu/~schwellerr/ Robert Schweller 4 th year Graduate Student Electrical Engineering and Computer Science Department Northwestern University Advisor: Ming-Yang Kao Email: schwellerr@cs.northwestern.edu
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.