Download presentation
Presentation is loading. Please wait.
1
Seismic waves Wave propagation Hooke’s law Newton’s law wave equation Wavefronts and Rays Interfaces Reflection and Transmission coefficients
2
Seismic Waves body waves P-waves (longitudinal, compressional) S-waves (shear, transverse) S V -wave S H
3
Body waves:
4
Different kind of waves Transversal waves (S-waves) Longitudinal waves (P-waves) 1 3 5 4 2 2 4 1 3 5
5
Examples of different waves Elektromagnetic spectrum Frequency AM, FM, Georadar, Visible, X-ray Acoustic spectrum Earthquake, audible + seismic 10 6 10 0 10 19 Hz
6
Surface waves Rayleigh-waves Love-waves
7
Newton’s law P(z) P(z+ z) UzUz P is the acoustic pressure U z is the displacement
8
Newton’s law P(z) P(z+ z) P(z+ z) - P(z) = UzUz d2d2 dt 2 UzUz - z- z is the massdensity
9
Newton’s law P(z) P(z+ z) UzUz -- UzUz 22 t2t2 P = zz
10
Hooke’s law P - z P U z (z+ z) - U z (z) = U z (z) U z (z+ z) is the compressibility
11
Hooke’s law P U z (z) U z (z+ z) U z = - P zz
12
Acoustic Wave equation 22 z2z2 P 22 t2t2 P 1 c2c2 = -w(t) (z)w(t) = q(t) (sourcesignal) 22 t2t2 c = ( ) -1/2 (wavespeed)
13
Propagation of seismic waves (Roth et al., 1998)
14
Object detection using WAVES:
15
Object detection using WAVES B Source O Receiver
16
Wavefronts versus Rays Wavefronts indicate the boundary of the material which already moves and the material which is still undisturbed. Rays are plotted perpendicular with respect to the wavefronts and describe the dominant propagation of the seismic energy between two locations
17
Geometrical Wave propagation SourceReceiverSource Rays are perpendicular to the wavefronts,
18
1 2 v 1 v 2 Angle of incidence = angle of reflection 1 = 2 Interface: reflection
19
1 v 1 v 2 1 sin 2 ------- ----- v 1 v 2 -----= Interface: Refraction v 1 v 2 > 2 v 1 v 2 < 2
20
1 v 1 v 2 1 sin 90 sin ---------- 1 sin v 1 v 2 -----= 2 90 = Special case: critical angle = 2
21
1 v p1, v s1 1 sin 1 -------- --- v p 1 v s 1 --------= 1 2 1 sin 2 ------- --- v p 1 v s 2 --------= v p2, v s2 Interface: Conversion from P wave to S wave
22
1 sin v p 1 ------ = -- 1 sin v s 1 ------ = -- 2 sin v p 2 -------- = - 2 sin v s 2 -------------- = n sin v s n --------- = p = constant p = Slowness 1 2 2 3 3 1 Snell’s law v p 1 v s 1 v p 2 v s 2 v p 3 v s 3
23
Propagation of seismic waves (Roth et al., 1998)
24
EE R E T v 1 1 v 2 2 E = E R + E T R + T = 1 R = Reflection coefficient T = Transmission coefficient E = Energy Transmission- and Reflection coefficients
25
R T v 1 1 v 2 2 Reflection coefficient Transmission coefficient R v 2 2 v 1 1 – v 2 2 v 1 1 + --------------- = ------------ Z 2 Z 1 – Z 2 Z 1 + --------------------= T 2v 1 1 v 2 2 v 1 1 + ---------------- = ----------- 2Z 1 Z 2 Z 1 + --------------------= with Z = v = acoustic Impedance Zoeppritz’s equations at normal incidence
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.