Presentation is loading. Please wait.

Presentation is loading. Please wait.

Intermediate Physics Circular Motion Spin “G”-Forces.

Similar presentations


Presentation on theme: "Intermediate Physics Circular Motion Spin “G”-Forces."— Presentation transcript:

1 Intermediate Physics Circular Motion Spin “G”-Forces

2 Circular Motion (1) Circular motion is classified as spin or orbital motion.  Spin is motion of an object around its center of mass Example is a figure skater spinning around his/her center of mass  Orbital is the motion of the center of mass of a particle about an origin. Example is a person sitting in a roller coaster cart as it travels around a “circular” loop or a person swinging a ball on a string (both have spin AND angular motion) The rate of spin or orbit is called angular speed (ω) and the angular velocity (ω) is always perpendicular to the plane of motion (parallel to the axis of rotation). The direction of ω indicates whether the object is moving clockwise or counter-clockwise and is found using the right-hand-rule. We usually measure ω in radians per second and we can calculate instantaneous or tangential speed v from ω through the relation v= ω x r where r = radius. In circular motion, this expression reduces to v=ωr. This will be explained later when the cross product is discussed.

3 Circular Motion (2) In uniform circular motion angular velocity remains constant but tangential velocity at a particular point changes at every instant (not the magnitude, but direction is continuously changing). A changing velocity implies a nonzero acceleration is present. We call this centripetal acceleration which is defined as: The direction is always towards the center of the circle

4 Circular Motion (3) Angular Acceleration (α)  Picture a washing machine starting its spin cycle; it takes time to get up to speed. Also picture how a cart on a roller coaster track entering a loop has a higher speed than it has at the top of the loop - it must be “decelerating.”  Do not confuse angular acceleration with centripetal acceleration. In the roller coaster case, there are both centripetal acceleration and angular acceleration - they are very different quantities.  α is derived in a similar way as translational acceleration – take the time derivative of angular velocity.  You can calculate tangential acceleration by the relation a=αr, where r = radius.

5 Spin (1) When discussing a rolling ball coaster, we are considering translational motion and spinning, not orbital motion. Convince yourself that every point on a spinning ball, regardless of radius from the axis of spin, is moving at the exact same angular speed (rad/s). Recalling the equation for kinetic energy of rotation, K r = ½ I ω 2, we can now define all these terms. Note that the form of K r is similar to that of translational kinetic energy, K t = ½mv 2, except I is substituted for m and ω for v.

6 Spin (2) We have defined ω as the angular equivalent to linear velocity. I is, in fact, the angular counterpart to mass. Moment of Inertia, I, is a proportionality constant relating energy to angular speed. It incorporates distribution of mass. I is different for different types of objects. For example, I = ½mr² for a disk, I = mr² for a ring, and I = ( 2/5) mr² for a sphere.

7 “G”-Forces (1) A “G”-Force is a way to quantify the sum of all forces on a person. We can experience both positive and negative G-forces. If the sum of all forces acting on a person is the force of gravity, the person experiences 1 G. So to find the total number of G-Forces, divide the total force by the acceleration of gravity (9.81m/s 2 ) times your mass. The force of gravity when you sit, stand or lie down is 1 G, though the total sum of the forces on you is zero. If you carry someone of the same weight on your back and walk around, you’re feeling a force of 2 G’s.

8 “G”-Forces (2) A person can experience a maximum of 9 positive G’s before blacking out.  Some say that a human can experience up to 100 G’s for a fraction of a second (the body compresses a little so it doesn’t feel an instantaneous acceleration).  Roller coasters typically peak at 5 G’s to ensure safety and comfort.  At >20 G’s there is a potential for death due to internal injuries (organs are moving around). A person can experience a maximum of 2-3 negative G’s before blood vessels in the eyes rupture. Beyond 2-3 results in brain hemorrhage, and other internal disturbances (marked discomfort).


Download ppt "Intermediate Physics Circular Motion Spin “G”-Forces."

Similar presentations


Ads by Google