Download presentation
Presentation is loading. Please wait.
1
www.kostic.niu.edu © MMIV* Prof. M. Kostic FUEL-CELL AND HEAT-ENGINE ENERGY-CONVERSION COMPARATIVE ANALYSIS FUEL-CELL AND HEAT-ENGINE ENERGY-CONVERSION COMPARATIVE ANALYSIS “ An Actual Engineering Topic! " Prof. M. Kostic Mechanical Engineering Mechanical Engineering NORTHERN ILLINOIS UNIVERSITY
2
www.kostic.niu.edu © MMIV* Prof. M. Kostic Hydrogen Fuel Cell…
3
www.kostic.niu.edu © MMIV* Prof. M. Kostic TABLE I: Energy-to-work conversion efficiencies Engine/ProcessEfficiency % Otto (gasoline) engine25-35 Diesel engine30-40 Gas turbine30-40 Steam turbine30-40 Nuclear, steam turbine30-35 Combined gas/steam turbines40-55+ Fuel cell (hydrogen, etc.)40-60+ Photovoltaic cell10-20 Windmill30-40 (59% limit) Hydro turbine80-85 Electro-mechanical motor/generator80-95
4
www.kostic.niu.edu © MMIV* Prof. M. Kostic Chemical reaction
5
www.kostic.niu.edu © MMIV* Prof. M. Kostic Maximum possible reversible work
6
www.kostic.niu.edu © MMIV* Prof. M. Kostic Enthalpy of hydrogen formation or combustion
7
www.kostic.niu.edu © MMIV* Prof. M. Kostic Efficiency of a hydrogen fuel-cell
8
www.kostic.niu.edu © MMIV* Prof. M. Kostic Efficiency of a hydrogen fuel-cell (2)
9
www.kostic.niu.edu © MMIV* Prof. M. Kostic Standard Formation Enthalpy (h f ) and Gibbs Free Energy (g f ) for Water-Vapor(g) and Water-Liquid(l) [in scale]. 95% 100% 83%
10
www.kostic.niu.edu © MMIV* Prof. M. Kostic Maximum adiabatic combustion temperature
11
www.kostic.niu.edu © MMIV* Prof. M. Kostic Combustion entropy generation and work lost due to entropy generation (combustion irreversibility)
12
www.kostic.niu.edu © MMIV* Prof. M. Kostic Combustion Second Law efficiency (i.e., work availability, or exergy efficiency)
13
www.kostic.niu.edu © MMIV* Prof. M. Kostic Heat engine, constant T ad temperature, ideal Carnot cycle
14
www.kostic.niu.edu © MMIV* Prof. M. Kostic Heat engine, constant and variable temperature, ideal Carnot cycle
15
www.kostic.niu.edu © MMIV* Prof. M. Kostic Heat engine, constant temperature Carnot cycle
16
www.kostic.niu.edu © MMIV* Prof. M. Kostic Heat engine, variable temperature, ideal Carnot cycle
17
www.kostic.niu.edu © MMIV* Prof. M. Kostic Conclusion
18
www.kostic.niu.edu © MMIV* Prof. M. Kostic Conclusion…... the practical efficiencies are usually half of their theoretical limits, about 35% and 50% for heat engines and fuel cells, respectively. Still, further developments are needed to overcome fuel-cell limitations in low power density and competitive cost.
19
www.kostic.niu.edu © MMIV* Prof. M. Kostic No Limits … No Limits … The Future Belongs To… … Whoever Gets There First NO SPEED LIMIT
20
www.kostic.niu.edu © MMIV* Prof. M. Kostic You may contact Prof. Kostic at: mailto: kostic@niu.edu mailto: kostic@niu.edu or on the Web: www.kostic.niu.edu www.kostic.niu.edu http:// prof.mkostic.com http:// prof.mkostic.com Prof. M. Kostic Mechanical Engineering Mechanical Engineering NORTHERN ILLINOIS UNIVERSITY
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.