Download presentation
Presentation is loading. Please wait.
1
Reflected Light From Extra Solar Planets Modeling light curves of planets with highly elliptical orbits Daniel Bayliss, Summer Student, RSAA, ANU Ulyana Dyudina, RSAA, ANU Penny Sackett, RSAA, ANU
2
Introduction 119 extra solar planets detected. – 118 found by precise radial velocity measurements. – 1 by found by transit photometry. No reflected light from extra solar planets detected to date, however the albedo of τ Boo constrained by lack of signal (Charbonneau et al.,1999, ApJ, 522, L145).
3
Reflected light Amount of reflected light given by: p=albedod=planet-star separation =phase function R p =planet radius
4
Space Photometry Current photometric precision limited by atmosphere to around L P /L * ~50 x 10 -6. Canadian micro satellite MOST target list includes 3 stars with planets (close-in, circular). NASA’s Kepler satellite (2007) with 100,000+ target stars. Predicted to achieve precision of L P /L * < 10 x 10 -6. MOST Kepler
5
Elliptical Orbits Semi-major axis ApocentrePericentre
6
Eccentricities of Extra Solar Planets Eccentricity Semi-major axis (AU)
7
Inclination: i=0° (face on) Orientation of the orbital plane - Inclination
8
Inclination: i=10°
9
Inclination: i=45°
10
Inclination: i~90° (edge on)
11
Argument of pericentre: ω=0° To observer Orientation of the orbital plane - Argument of Pericentre
12
To observer Argument of pericentre: ω=90°
13
To observer Argument of pericentre: ω=-90°
14
Model Reflective properties of planets based on Pioneer data of Jupiter. Planetary radius assumed to be 1 Jupiter radius. Example light curve properties: –Semi-major axis = 0.1 AU –Argument of pericentre = 60° –Eccentricity = 0.5
15
Time P days 8 x 10 -6 0 Example Light Curve i=90 o (Edge on) L P / L * PericentreApocentre
16
Time 8 x 10 -6 i=75 o 0 L P / L * P days
17
Time 8 x 10 -6 i=60 o 0 L P / L * P days
18
Time 8 x 10 -6 i=45 o 0 L P / L * P days
19
Time 8 x 10 -6 i=30 o 0 L P / L * P days
20
Time 8 x 10 -6 i=15 o 0 L P / L * P days
21
Time 8 x 10 -6 i=0 o (Face on) 0 L P / L * P days
22
Example - HD 108147b Extra solar planet discovered by Pepe, Mayor, et al (2002, A&A, 388, 632). Properties: –Semi-major axis = 0.104 AU –Period = 10.9 days –Eccentricity = 0.498 –Argument of pericentre = -41° –Inclination = ?
23
Time 10.9 days 40 x 10 -6 HD 108147b 0 L P / L *
24
Time 10.9 days 10 x 10 -6 Contrast contrast 0 L P / L *
25
Contrast for e=0 Inclination (i) 90 0 -90 Scale at 0.1 AU (x10 -6 ) 100 10 1 0.1 Argument of pericentre (ω) 090 Kepler
26
Contrast for e=0.6 Inclination (i) 90 0 -90 Scale at 0.1 AU (x10 -6 ) Argument of pericentre (ω) 090 100 10 1 0.1
27
Contrast for various e Argument of pericentre (ω) Scale at 0.1 AU (x10 -6 ) Inclination (i) e=0.6 e=0.7 e=0.8 e=0 e=0.1 e=0.2 e=0.3 e=0.4 e=0.5 100 10 1 0.1
28
Conclusions 1.A low inclination (face on) orientation can show strong contrast if it has a high eccentricity orbit. 2.Light curves from elliptical orbits may help constrain a systems inclination. 3.Favourable pericentric orientation can dramatically increase the contrast.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.