Download presentation
Presentation is loading. Please wait.
1
Penn ESE535 Spring 2008 -- DeHon 1 ESE535: Electronic Design Automation Day 20: April 7, 2008 Scheduling Variants and Approaches
2
Penn ESE535 Spring 2008 -- DeHon 2 Today Scheduling –Force-Directed –SAT/ILP –Branch-and-Bound
3
Penn ESE535 Spring 2008 -- DeHon 3 Last Time Resources aren’t free Share to reduce costs Schedule operations on resources Greedy approximation algorithm
4
Penn ESE535 Spring 2008 -- DeHon 4 Force-Directed Problem: how exploit schedule freedom (slack) to minimize instantaneous resources –Directly solve time constrained (last time only solved indirectly) –Trying to minimize resources
5
Penn ESE535 Spring 2008 -- DeHon 5 Force-Directed Given a node, can schedule anywhere between ASAP and ALAP schedule time –Between latest schedule predecessor and ALAP –Between ASAP and already scheduled successors N.b.: Scheduling node will limit freedom of nodes in path
6
Penn ESE535 Spring 2008 -- DeHon 6 Single Resource Challenge A7A8 B11 A9 B2 B3 B4 A1 A2 A3 A4 A5 A6 A10A11A13A12 B5 B1 B6 B7 B8 B9 B10
7
Penn ESE535 Spring 2008 -- DeHon 7 Force-Directed If everything where scheduled, except for the target node, we would: –examine resource usage in all timeslots allowed by precedence –place in timeslot which has least increase maximum resources
8
Penn ESE535 Spring 2008 -- DeHon 8 Force-Directed Problem: don’t know resource utilization during scheduling Strategy: estimate resource utilization
9
Penn ESE535 Spring 2008 -- DeHon 9 Force-Directed Estimate Assume a node is uniformly distributed within slack region –between earliest and latest possible schedule time Use this estimate to identify most used timeslots
10
Penn ESE535 Spring 2008 -- DeHon 10 Single Resource Challenge 22 8 2 8 8 8 2 2 2 2 2 2 2222 8 8 8 8 8 8 8
11
Penn ESE535 Spring 2008 -- DeHon 11 Single Resource Challenge 22 8 2 8 8 8 2 2 2 2 2 2 2222 8 8 8 8 8 8 8
12
Penn ESE535 Spring 2008 -- DeHon 12 Single Resource Challenge 22 8 2 8 8 8 2 2 2 2 2 2 2222 8 8 8 8 8 8 8
13
Penn ESE535 Spring 2008 -- DeHon 13 Single Resource Challenge 22 8 2 8 8 8 2 2 2 2 2 2 2222 8 8 8 8 8 8 8
14
Penn ESE535 Spring 2008 -- DeHon 14 Single Resource Challenge 22 8 2 8 8 8 2 2 2 2 2 2 2222 8 8 8 8 8 8 8 2 3/9 2 1/9
15
Penn ESE535 Spring 2008 -- DeHon 15 Force-Directed Scheduling a node will shift distribution –all of scheduled node’s cost goes into one timeslot –predecessor/successors may have freedom limited so shift their contributions Want to shift distribution to minimize maximum resource utilization (estimate)
16
Penn ESE535 Spring 2008 -- DeHon 16 Single Resource Challenge 22 8 2 8 8 8 2 2 2 2 2 2 2222 8 8 8 8 8 8 8 Repeat
17
Penn ESE535 Spring 2008 -- DeHon 17 Single Resource Challenge 22 8 2 8 8 8 2 2 2 2 2 2 2222 8 8 8 8 8 8 8 2 3/9 2 1/9 Repeat
18
Penn ESE535 Spring 2008 -- DeHon 18 Single Resource Challenge 22 8 2 8 8 8 2 2 2 2 2 2 2222 8 8 8 8 8 8 8
19
Penn ESE535 Spring 2008 -- DeHon 19 Single Resource Challenge 22 8 2 8 8 8 2 2 2 2 2 2 2222 8 8 8 8 8 8 8 3 4/9
20
Penn ESE535 Spring 2008 -- DeHon 20 Single Resource Challenge 22 8 2 8 8 8 2 2 2 2 2 2 2222 8 8 8 8 8 8 8
21
Penn ESE535 Spring 2008 -- DeHon 21 Single Resource Challenge 22 8 2 8 8 8 2 2 2 2 2 2 2222 8 8 8 8 8 8 8 3 2/9
22
Penn ESE535 Spring 2008 -- DeHon 22 Single Resource Challenge 22 8 2 8 8 8 2 2 2 2 2 2 2222 8 8 8 8 8 8 8 2 3/9 2 1/9
23
Penn ESE535 Spring 2008 -- DeHon 23 Single Resource Challenge 22 8 2 8 8 8 2 2 2 2 2 2 2222 8 8 8 8 8 8 8 2 3/9
24
Penn ESE535 Spring 2008 -- DeHon 24 Single Resource Challenge 22 8 2 8 8 8 2 2 2 2 2 2 2222 8 8 8 8 8 8 8 2 3/9
25
Penn ESE535 Spring 2008 -- DeHon 25 Single Resource Challenge 22 8 2 8 8 8 2 2 2 2 2 2 2222 8 8 8 8 8 8 8
26
Penn ESE535 Spring 2008 -- DeHon 26 Single Resource Challenge 22 8 2 8 8 8 2 2 2 2 2 2 2222 8 8 8 8 8 8 8 3
27
Penn ESE535 Spring 2008 -- DeHon 27 Single Resource Challenge 22 8 2 8 8 8 2 2 2 2 2 2 2222 8 8 8 8 8 8 8
28
Penn ESE535 Spring 2008 -- DeHon 28 Single Resource Challenge 22 8 2 8 8 8 2 2 2 2 2 2 2222 8 8 8 8 8 8 8 2 13/18
29
Penn ESE535 Spring 2008 -- DeHon 29 Single Resource Challenge 22 8 2 8 8 8 2 2 2 2 2 2 2222 8 8 8 8 8 8 8
30
Penn ESE535 Spring 2008 -- DeHon 30 Single Resource Challenge 22 8 2 8 8 8 2 2 2 2 2 2 2222 8 8 8 8 8 8 8 3 2/9
31
Penn ESE535 Spring 2008 -- DeHon 31 Single Resource Challenge 22 8 2 8 8 8 2 2 2 2 2 2 2222 8 8 8 8 8 8 8 2 13/18
32
Penn ESE535 Spring 2008 -- DeHon 32 Single Resource Challenge 22 8 2 8 8 8 2 2 2 2 2 2 2222 8 8 8 8 8 8 8 2 13/18
33
Penn ESE535 Spring 2008 -- DeHon 33 Single Resource Challenge 22 8 2 8 8 8 2 2 2 2 2 2 2222 8 8 8 8 8 8 8
34
Penn ESE535 Spring 2008 -- DeHon 34 Single Resource Challenge 22 8 2 8 8 8 2 2 2 2 2 2 2222 8 8 8 8 8 8 8 2 13/18
35
Penn ESE535 Spring 2008 -- DeHon 35 Single Resource Challenge 22 8 2 8 8 8 2 2 2 2 2 2 2222 8 8 8 8 8 8 8
36
Penn ESE535 Spring 2008 -- DeHon 36 Single Resource Challenge 22 8 2 8 8 8 2 2 2 2 2 2 2222 8 8 8 8 8 8 8 2 13/18
37
Penn ESE535 Spring 2008 -- DeHon 37 Single Resource Challenge 22 8 2 8 8 8 2 2 2 2 2 2 2222 8 8 8 8 8 8 8 2 13/18
38
Penn ESE535 Spring 2008 -- DeHon 38 Single Resource Challenge 22 8 2 8 8 8 2 2 2 2 2 2 2222 8 8 8 8 8 8 8
39
Penn ESE535 Spring 2008 -- DeHon 39 Single Resource Challenge 22 8 2 8 8 8 2 2 2 2 2 2 2222 8 8 8 8 8 8 8
40
Penn ESE535 Spring 2008 -- DeHon 40 Single Resource Challenge 22 8 2 8 8 8 2 2 2 2 2 2 2222 8 8 8 8 8 8 8 Many steps…
41
Penn ESE535 Spring 2008 -- DeHon 41 Force-Directed Algorithm 1.ASAP/ALAP schedule to determine range of times for each node 2.Compute estimated resource usage 3.Pick most constrained node (in largest time slot…) –Evaluate effects of placing in feasible time slots (compute forces) –Place in minimum cost slot and update estimates –Repeat until done
42
Penn ESE535 Spring 2008 -- DeHon 42 Time Evaluate force of putting in timeslot O(N) –Potentially perturbing slack on net prefix/postfix for this node N Each node potentially in T slots: ×T N nodes to place: ×N O(N 2 T) –Loose bound--don’t get both T slots and N perturbations
43
Penn ESE535 Spring 2008 -- DeHon 43 SAT/ILP (Integer-Linear Programming)
44
Penn ESE535 Spring 2008 -- DeHon 44 Two Constraint Challenge Processing elements have limited memory –Instruction memory (data memory) Tasks have different requirements for compute and instruction memory –i.e. Run length not correlated to code length
45
Penn ESE535 Spring 2008 -- DeHon 45 Task Task: schedule tasks onto PEs obeying both memory and compute capacity limits Example and ILP solution From Plishker et al. NSCD2004
46
Penn ESE535 Spring 2008 -- DeHon 46 Task Task: schedule tasks onto PEs obeying both memory and compute capacities two capacity partitioning problem –…actually, didn’t say anything about communication… two capacity bin packing problem Task: i
47
Penn ESE535 Spring 2008 -- DeHon 47 SAT Packing Variables: A i,j – task i assigned to resource j Constraints Coverage constraints Uniqueness constraints Cardinality constraints –PE compute –PE memory
48
Penn ESE535 Spring 2008 -- DeHon 48 Allow Code Sharing Two tasks of same type can share code Instead of memory capacity –Vector of memory usage Compute PE Imem vector –As OR of task vectors assigned to it Compute mem space as sum of non- zero vector entries
49
Penn ESE535 Spring 2008 -- DeHon 49 Allow Code Sharing Two tasks of same type can share code Task has vector of memory uage –Task i needs set of instructions k: T i,k Compute PE Imem vector –OR (all i): PE.Imem j,k +=A i,j * T i,k PE Mem space –PE.Total_Imem j = (PE.Imem j,k *Instrs(k))
50
Penn ESE535 Spring 2008 -- DeHon 50 Symmetries Many symmetries Speedup with symmetry breaking –Tasks in same class are equivalent –PEs indistinguishable –Total ordering on tasks and PEs –Add constraints to force tasks to be assigned to PEs by ordering –Plishker claims “significant runtime speedup” –Using GALENA [DAC 2003] psuedo-Boolean SAT solver
51
Penn ESE535 Spring 2008 -- DeHon 51 Plishker Task Example
52
Penn ESE535 Spring 2008 -- DeHon 52 Results SAT/ILP Solve Greedy (first-fit) binpack Solutions in < 1 second
53
Penn ESE535 Spring 2008 -- DeHon 53 Why can they do this? Ignore precedence? Ignore Interconnect?
54
Penn ESE535 Spring 2008 -- DeHon 54 Why can they do this? Ignore precedence? –feed forward, buffered Ignore Interconnect? –Through shared memory, not dominant?
55
Penn ESE535 Spring 2008 -- DeHon 55 Interconnect Buffers Allow “Software Pipelining” Each data item Spatial we would pipeline, running all three at once Think of each schedule instance as one timestep in spatial pipeline.
56
Penn ESE535 Spring 2008 -- DeHon 56 Interconnect Buffer ABC 50100 50 A B C PE0 PE1 ABC ABC ABCABC A BC A BC A BC A BC
57
Penn ESE535 Spring 2008 -- DeHon 57 Add Precedence to SAT/ILP? Assign start time to each task Precedence: constrain start of each task to be greater than start+run of each predecessor Time Exclusivity: constrain non- overlap of start start+run-1 on nodes on same PE –Maybe formulate as order on PE –And make PE order predecessor like a task predecessor? Untested conjecture
58
Penn ESE535 Spring 2008 -- DeHon 58 Memory Schedule Variants Persistent: holds memory whole time –E.g. task state, instructions Task temporary: only uses memory space while task running Intra-Task: use memory between point of production and consumption –E.g. Def-Use chains
59
Penn ESE535 Spring 2008 -- DeHon 59 Memory Schedule Variants Persistent: –Binpacking in memory Task temporary: –Co-schedule memory slot with execution Intra-Task: –Lifetime in memory depends on scheduling def and last use –Phase Ordered: Register coloring
60
Penn ESE535 Spring 2008 -- DeHon 60 Branch-and-Bound
61
Penn ESE535 Spring 2008 -- DeHon 61 Brute-Force Try all schedules Branching/Backtracking Search Start w/ nothing scheduled (ready queue) At each move (branch) pick: –available resource time slot –ready task (predecessors completed) –schedule task on resource
62
Penn ESE535 Spring 2008 -- DeHon 62 Example T1 T2 T3 T4 T5 T6 T1 time 1 T3 time 1 T2 time 1 idle time 1 T3 time2 T4 time 2 idle time 2 Target: 2 FUs
63
Penn ESE535 Spring 2008 -- DeHon 63 Branching Search Explores entire state space –finds optimum schedule Exponential work –O (N (resources*time-slots) ) Many schedules completely uninteresting
64
Penn ESE535 Spring 2008 -- DeHon 64 Reducing Work 1.Canonicalize “equivalent” schedule configurations 2.Identify “dominating” schedule configurations 3.Prune partial configurations which will lead to worse (or unacceptable results)
65
Penn ESE535 Spring 2008 -- DeHon 65 “Equivalent” Schedules If multiple resources of same type –assignment of task to particular resource at a particular timeslot is not distinguishing T1 T2 T3 T2 T1 T3 Keep track of resource usage by capacity at time-slot.
66
Penn ESE535 Spring 2008 -- DeHon 66 “Equivalent” Schedule Prefixes T1T3 T2T4 T1 T3 T2 T4 T1 T2 T3 T4 T5 T6
67
Penn ESE535 Spring 2008 -- DeHon 67 “Non-Equivalent” Schedule Prefixes T1 T2 T3 T2 T3 T1 T2 T3 T4 T5 T6
68
Penn ESE535 Spring 2008 -- DeHon 68 Pruning Prefixes? I’m not sure there is an efficient way (general)? Keep track of schedule set –walk through state-graph of scheduled prefixes –unfortunately, set is power-set so 2 N –…but not all feasible, so shape of graph may simplify
69
Penn ESE535 Spring 2008 -- DeHon 69 Dominant Schedules A strictly shorter schedule –scheduling the same or more tasks –will always be superior to the longer schedule T1 T2T1T2T5 T4 T5 T3 T2 T1 T5 T4
70
Penn ESE535 Spring 2008 -- DeHon 70 Pruning If can establish a particular schedule path will be worse than one we’ve already seen –we can discard it w/out further exploration In particular: –LB=current schedule time + lower_bound_estimate –if LB greater than existing solution, prune
71
Penn ESE535 Spring 2008 -- DeHon 71 Pruning Techniques Establish Lower Bound on schedule time Critical Path (ASAP schedule) Resource Bound Critical Chain
72
Penn ESE535 Spring 2008 -- DeHon 72 “Critical Chain” Lower Bound Bottleneck resource present coupled resource and latency bound Single red resource
73
Penn ESE535 Spring 2008 -- DeHon 73 “Critical Chain” Lower Bound Bottleneck resource present coupled resource and latency bound Single red resource Critical path 5 Resource Bound (1,1) 4 Critical Chain (1,1) 7
74
Penn ESE535 Spring 2008 -- DeHon 74 Alpha-Beta Search Generalization –keep both upper and lower bound estimates on partial schedule Lower bounds from CP, RB, CC Upper bounds with List Scheduling –expand most promising paths (least upper bound, least lower bound) –prune based on lower bounds exceeding known upper bound –(technique typically used in games/Chess)
75
Penn ESE535 Spring 2008 -- DeHon 75 Alpha-Beta Each scheduling decision will tighten –lower/upper bound estimates Can choose to expand –least current time (breadth first) –least lower bound remaining (depth first) –least lower bound estimate –least upper bound estimate Can control greediness –weighting lower/upper bound –selecting “most promising”
76
Penn ESE535 Spring 2008 -- DeHon 76 Note Aggressive pruning and ordering –can sometimes make polynomial time in practice –often cannot prove will be polynomial time –usually represents problem structure we still need to understand
77
Penn ESE535 Spring 2008 -- DeHon 77 Multiple Resources Works for multiple resource case Computing lower-bounds per resource –resource constrained Sometimes deal with resource coupling –e.g. must have 1 A and 1 B simultaneously or in fixed time slot relation e.g. bus and memory port
78
Penn ESE535 Spring 2008 -- DeHon 78 Summary Resource estimates and Refinement SAT/ILP Schedule Software Pipelining Branch-and-bound search –“equivalent” states –dominators –estimates/pruning
79
Penn ESE535 Spring 2008 -- DeHon 79 Admin Reading Assignment 6
80
Penn ESE535 Spring 2008 -- DeHon 80 Big Ideas: Estimate Resource Usage Use dominators to reduce work Techniques: –Force-Directed –SAT/ILP –Coloring –Search Branch-and-Bound Alpha-Beta
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.