Download presentation
Presentation is loading. Please wait.
1
How do the basic reproduction ratio and the basic depression ratio determine the dynamics of a system with many host and many pathogen strains? Rachel Bennett and Roger Bowers
2
Contents Understanding the biology Definitions Mathematical Approach Examples n host strains with n pathogen strains
3
Biological Background Strains Community dynamics Co-evolution not evolution
4
is the expected number of secondary cases per primary in a totally susceptible population. is the amount by which the total population is decreased, per infected individual, due to the presence of infection. Definitions
5
Faced with an individual host strain pathogen virulence evolves to maximise which yields monomorphism. (Bremermann & Thieme, 1989) Faced with an individual pathogen strain host resistance evolves to minimise which yields monomorphism. (Bowers, 2001) So, with many host and pathogen strains - how do and interact? - is multi-strain (polymorphism) co-existence possible? - can stable cycles occur? Questions!
6
Model. Where: : susceptible, : infective, K: carrying capacity, : intrinsic growth rate, : transmission rate, : recovery rate, : pathogen induced death rate, : uninfected death rate.
7
Mathematical approach Find equilibrium points Feasibility conditions Jacobian Stability conditions Dynamical illustrations by numerical integration
8
1 host strain, 1 pathogen strain Equilibrium points with conditions: host and pathogen strain die out (unstable) pathogen strain dies out (R 0,11 < 1) endemic infection (R 0,11 > 1)
9
1 host strain, 2 pathogen strains Equilibrium points with conditions: host and pathogen strain die out (unstable) pathogen strains die out (R 0,11 < 1, R 0,12 < 1) host strain 1 with pathogen strain 2 (R 0,12 > 1, R 0,12 > R 0,11 ) host strain 1 with pathogen strain 1 (R 0,11 > 1, R 0,11 > R 0,12 )
10
2 host strains, 1 pathogen strain Equilibrium points with conditions: host and pathogen strain die out (unstable) pathogen strain dies out with X 1 + X 2 = K (R 0,11 < 1, R 0,21 < 1) host strain 2 with pathogen strain 1 (R 0,21 > 1, D 0,11 > D 0,21 ) host strain 1 with pathogen strain 1 (R 0,11 > 1, D 0,21 > D 0,11 )
11
2 host strains, 2 pathogen strains Equilibrium points with conditions: host and pathogen strains die out (unstable) pathogen strains die out : X 1 + X 2 = K (K > X 1 * R 0,11 + X 2 * R 0,21, K > X 1 * R 0,12 + X 2 * R 0,22 ) host strain 1 with pathogen strain 1 (D 0,21 > D 0,11, R 0,11 > R 0,12, R 0,11 > 1) host strain 1 with pathogen strain 2 (D 0,22 > D 0,12, R 0,12 > R 0,11, R 0,12 > 1) host strain 2 with pathogen strain 1 (D 0,11 > D 0,21, R 0,21 > R 0,22, R 0,21 > 1) host strain 2 with pathogen strain 2 (D 0,12 > D 0,22, R 0,22 > R 0,21, R 0,22 > 1)
12
2 host strain, 2 pathogen strain coexistence Jacobian: diagonalised 3 negative eigenvalues Identical feasibility and stability conditions given that stability changes via a transcritical bifurcation.
13
Point Stable (4 host strains with 4 pathogen strains) R 0,11 > R 0,12 > R 0,13 > R 0,14, 1234 R 0,22 > R 0,21 > R 0,23 > R 0,24, 2134 R 0,33 > R 0,32 > R 0,31 > R 0,34, 3214 R 0,44 > R 0,43 > R 0,42 > R 0,41. 4321 D 0,11 > D 0,21 > D 0,31 > D 0,41, 1234 D 0,22 > D 0,32 > D 0,42 > D 0,12, 2341 D 0,33 > D 0,43 > D 0,13 > D 0,23, 3412 D 0,44 > D 0,14 > D 0,24 > D 0,34. 4123
14
Cyclic stable (4 host strains with 4 pathogen strains) R 0,11 > R 0,12 > R 0,13 > R 0,14, 1234 R 0,22 > R 0,23 > R 0,24 > R 0,21, 2341 R 0,33 > R 0,34 > R 0,31 > R 0,32, 3412 R 0,44 > R 0,41 > R 0,42 > R 0,43. 4123 D 0,11 > D 0,21 > D 0,31 > D 0,41, 1234 D 0,22 > D 0,32 > D 0,42 > D 0,12, 2341 D 0,33 > D 0,43 > D 0,13 > D 0,23, 3412 D 0,44 > D 0,14 > D 0,24 > D 0,34. 4123
15
Possible equilibria for n host strains with n pathogen strains Uninfected:H = K, Y hp = 0 for all h and p. Infected X h = X * hp = H T,hp, (monomorphic): X k = Y kq = 0 for all k h and q p. Coexistence States (polymorphic):
16
n host strains with n pathogen strains Smaller n x n coexistence can occur within a larger n x n system e.g. 3 x 3 coexist in a 5 x 5 system. n x m coexistence is not possible, e.g. 2 x 3 cannot coexist in a 7 x 7 system.
17
Summary Co-evolution not evolution. Importance of R 0 in pathogen virulence. Importance of D 0 in host resistance. The interaction of R 0 and D 0. Multi-strain (polymorphism) co-existence is possible. Stable cycles can occur.
18
Other work and future investigation analysed n strain predation, mutualism and competition models. modelling mutation (Adaptive Dynamics) connection between current results and adaptive dynamics results
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.