Download presentation
Presentation is loading. Please wait.
1
ECEn 670 Mini-Conference29-Nov.-2011Everett Bryan, Bryce Pincock Velocity Estimation using the Kinect Sensor Everett Bryan Bryce Pincock 29-Nov.-2011
2
ECEn 670 Mini-Conference29-Nov.-2011Everett Bryan, Bryce Pincock Outline Problem Statement Noise Characterization Velocity Estimation Results Conclusion
3
ECEn 670 Mini-Conference29-Nov.-2011Everett Bryan, Bryce Pincock Problem Statement The Microsoft Kinect is a new RGB-D sensor Great alternative to stereo cameras No available models of noise Robots operating in GPS-denied environments require external proximity sensors to estimate its states Safe and desired operation Characterize noise in Kinect and apply to a linear velocity estimator
4
ECEn 670 Mini-Conference29-Nov.-2011Everett Bryan, Bryce Pincock Noise Characterization Data Collection Error analysis Noise analysis Verification of Noise Models
5
ECEn 670 Mini-Conference29-Nov.-2011Everett Bryan, Bryce Pincock Noise Characterization Data Collection Kinect parallel to flat wall Capture depth map at 1cm increments
6
ECEn 670 Mini-Conference29-Nov.-2011Everett Bryan, Bryce Pincock Noise Characterization Error Analysis True depth map known Subtract captured depth map from truth
7
ECEn 670 Mini-Conference29-Nov.-2011Everett Bryan, Bryce Pincock Noise Characterization Noise Analysis Deterministic Noise Random Noise
8
ECEn 670 Mini-Conference29-Nov.-2011Everett Bryan, Bryce Pincock Noise Characterization Noise Analysis Deterministic Noise Error vs distance
9
ECEn 670 Mini-Conference29-Nov.-2011Everett Bryan, Bryce Pincock Noise Characterization Noise Analysis Random Noise
10
ECEn 670 Mini-Conference29-Nov.-2011Everett Bryan, Bryce Pincock Noise Characterization Noise Analysis Random Noise
11
ECEn 670 Mini-Conference29-Nov.-2011Everett Bryan, Bryce Pincock Noise Characterization Kinect Measurement Simulated Measurement Verification of Noise Models
12
ECEn 670 Mini-Conference29-Nov.-2011Everett Bryan, Bryce Pincock Velocity Estimation Improve velocity estimates using Minimum Mean Squared Error (MMSE) linear estimator
13
ECEn 670 Mini-Conference29-Nov.-2011Everett Bryan, Bryce Pincock Velocity Estimation Track features in successive frames Simplify to tracking the nxn center pixels in the depth map Requires no solution to complex feature extraction and data correspondence Take average value from nxn pixels as r t
14
ECEn 670 Mini-Conference29-Nov.-2011Everett Bryan, Bryce Pincock Results
15
ECEn 670 Mini-Conference29-Nov.-2011Everett Bryan, Bryce Pincock Results
16
ECEn 670 Mini-Conference29-Nov.-2011Everett Bryan, Bryce Pincock Conclusion Successfully characterized noise within the Kinect Successfully applied a MMSE linear estimator to estimate velocity
17
ECEn 670 Mini-Conference29-Nov.-2011Everett Bryan, Bryce Pincock Thank you
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.