Download presentation
Presentation is loading. Please wait.
1
Biotechnology Chapter 10
2
Golden Rice Rice plants with added genes make and store beta carotene
3
Video: Golden rice or Frankenfood?
4
GMOs and Transgenic Organisms Transgenic An organism that has been genetically modified with genes from a different species Genetically modified organisms (GMOs) Organism whose genome has been modified by genetic engineering
5
10.2 Finding Needles in Haystacks Gene research was limited until enzymes produced by bacteria to cut viral DNA were discovered Restriction enzyme Enzyme that cuts DNA at specific base sequences Used in DNA cloning to cut DNA into pieces that are inserted into cloning vectors
6
DNA Cloning DNA cloning mass-produces DNA fragments for research DNA cloning Set of procedures that uses living cells to make many identical copies of a DNA fragment Clone A genetically identical copy of DNA, a cell, or an organism
7
Cloning Vectors Cloning vector A DNA molecule that can accept foreign DNA, resulting in a hybrid molecule that can be transferred to a host cell, and get replicated in it Plasmid A small, circular DNA molecule in bacteria, replicated independently of the chromosomes A cloning vector
8
Recombinant DNA Recombinant DNA molecules are introduced into host cells such as bacteria, which copy the DNA as they divide Recombinant DNA Contains genetic material from more than one organism
9
Making Recombinant DNA 1. A restriction enzyme recognizes specific base sequences in DNA from two different sources 2. Restriction enzymes cut DNA into fragments with single-stranded tails (“sticky ends”) 3. DNA fragments from different sources are mixed together; matching sticky ends base-pair 4. DNA ligase joins fragments, forming recombinant DNA
10
Fig. 10-2, p. 181 restriction enzyme (cut) DNA ligase (paste) 1 A restriction enzyme recognizes a specific base sequence in DNA (green boxes) from two sources. 2 The enzyme cuts DNA from both sources into fragments that have sticky ends. 3 The DNA fragments from the two sources are mixed together. The matching sticky ends base-pair with each other. 4 DNA ligase joins the fragments of DNA where they overlap. Molecules of recombinant DNA are the result. mix Making Recombinant DNA
12
Fig. 10-3, p. 181 Bam Hl Pst l Sph l Kpn l Eco RI Sal l Acc l Xho l Xba l Sac l Bst XI Not l Cloning Vector 3.85 kb Plasmid
13
The use of mRNA for the Identification of DNA mRNA sequence comes from specific regions of DNA (Genes) mRNA sequence is used to make proteins and defines the physical/behavioral characteristics of the organism Therefore we use mRNA to identify active regions of DNA Use mRNA sequence and base pairing rules to identify DNA original sequence
14
cDNA Cloning RNA cannot be cloned directly; reverse transcriptase is used to copy single-stranded RNA into cDNA for cloning Reverse transcriptase Viral enzyme that uses mRNA as a template to make a strand of DNA cDNA DNA synthesized from an RNA template by the enzyme reverse transcriptase
15
Making cDNA
16
Fig. 10-4, p. 182 mRNA A The enzyme reverse transcriptase transcribes mRNA into DNA. mRNA cDNA B DNA polymerase replicates the DNA strand. cDNA Eco RI recognition site C The result is a double-stranded molecule of DNA that can be cut and pasted into a cloning vector. Stepped Art
17
Libraries A library is a collection of cells that host different fragments of DNA, often representing an organism’s entire genome Researchers make DNA libraries to isolate one gene from the many other genes in a genome Genome An organism’s complete set of genetic material
18
Nucleic Acid Hybridization Probes are used to identify one clone that hosts a DNA fragment of interest among many other clones in a DNA library Probe Short fragment of DNA labeled with a tracer Hybridizes with a specific nucleotide sequence Nucleic acid hybridization Base-pairing between DNA or RNA from different sources
19
PCR PCR quickly mass-produces copies of a particular DNA fragment for study Polymerase chain reaction (PCR) Uses primers and heat-resistant DNA polymerase to rapidly generate many copies of a DNA fragment Primer Short, single-strand of DNA designed to hybridize with a DNA fragment
20
Steps in PCR 1. Starting material is mixed with DNA polymerase, nucleotides and primers 2. Mixture is heated and cooled in cycles At high temperature, DNA unwinds At low temperature, primers base-pair with template DNA 3. Taq polymerase synthesizes complementary DNA strands on templates
21
2 When the mixture is heated, the double-stranded DNA separates into single strands. When it is cooled, some of the primers base-pair with the template DNA. 4 The mixture is heated again, and the double-stranded DNA separates into single strands. When it is cooled, some of the primers base-pair with the template DNA. Fig. 10-5, p. 183 1 DNA template (blue) is mixed with primers (red), nucleotides, and heat- tolerant Taq DNA polymerase. Stepped Art 3 Taq polymerase begins DNA synthesis at the primers, and complementary strands of DNA form on the single-stranded templates. 2 When the mixture is heated, the double-stranded DNA separates into single strands. When it is cooled, some of the primers base-pair with the template DNA. 5 Taq polymerase begins DNA synthesis at the primers, and complementary strands of DNA form on the single-stranded templates. 4 The mixture is heated again, and the double-stranded DNA separates into single strands. When it is cooled, some of the primers base-pair with the template DNA. Two Rounds of PCR
22
Animation: Polymerase chain reaction (PCR)
23
Animation: Formation of recombinant DNA
24
Animation: Use of a radioactive probe
25
Animation: Base-pairing of DNA fragments
26
Animation: How to make cDNA
27
Animation: Restriction enzymes
28
Animation: F2 ratios interaction
29
10.3 Studying DNA Short tandem repeats are multiple copies of a short DNA sequence that follow one another along a chromosome The number and distribution of short tandem repeats, unique in each individual, is revealed by electrophoresis as a DNA fingerprint
30
DNA Fingerprinting DNA fingerprinting is used in forensics, court evidence, and other applications DNA fingerprint An individual’s unique array of short tandem repeats Electrophoresis Used to separate DNA fragments by size
31
Fig. 10-6, p. 184 Evidence from Crime Scene Size ReferenceControl DNASize ReferenceVictimSuspect 1Suspect 2 Female Cells SemenSize ReferenceBoyfriendControl DNA Size Reference DNA Fingerprinting: A Forensic Case
32
The Human Genome Project Automated DNA sequencing and PCR enabled scientists to sequence the more than 3 billion bases of the human genome Sequencing Method of determining the order of nucleotides in DNA
33
Sequencing a Fragment of DNA The order of colors is the order of DNA bases (A, T, G, C)
34
Genomics Analysis of the human genome sequence is yielding new information about human genes and how they work Genomics The study of genomes (structural genomics, comparative genomics)
35
Some Sequenced Genomes
36
Animation: Automated DNA sequencing
37
Animation: DNA fingerprinting
38
Video: ABC News: DNA mystery: Human chimeras
39
Video: ABC News: Family ties: Paternity testing
40
3D Animation: Gene sequencing
41
10.4 Genetic Engineering Recombinant DNA technology and genome analysis are the basis of genetic engineering Genetic engineering is the directed alteration of an individual’s genome, resulting in a genetically modified organism (GMO) Genetic engineering Process by which deliberate changes are introduced into an individual’s genome
42
Genetically Modified Microorganisms A transgenic organism carries a gene from a different species Transgenic organisms are used in research, medicine, and industry Transgenic bacteria and yeast produce medically valuable proteins
43
Designer Plants Transgenic crop plants help farmers produce food more efficiently Plants with modified or foreign genes are now common in farm crops
44
Fig. 10-8, p. 187 1 An A. tumefaciens bacterium has been engineered to contain a Ti plasmid. The plasmid carries a foreign gene. 2 The bacterium infects a plant cell and transfers the Ti plasmid into it. The plasmid DNA becomes integrated into one of the cell’s chromosomes. 3 The plant cell divides, and its descendants form an embryo. 4The embryo develops into a transgenic plant. 5 The transgenic plant expresses the foreign gene. This tobacco plant is expressing a gene from a firefly. Using the Ti plasmid to Make a Transgenic Plant
45
Animation: Gene transfer using a Ti plasmid
46
Genetically Modified Crops Bt gene confers insect resistance to corn
47
Biotech Barnyards Transgenic animals produce human proteins Animals that would be impossible to produce by traditional breeding methods are being created by genetic engineering Transgenic animals are used in research, medicine, and industry
48
Transgenic Animals
49
Knockout Cells and Organ Factories Transgenic animals may one day provide a source of organs and tissues for transplantation into humans Xenotransplantation Transplant of an organ from one species to another
50
Animation: Transferring genes into plants
51
Video: ABC News: Cloned pooch
52
Video: ABC News: Mule clones
53
Video: ABC News: Glow-in-the-dark pigs
54
Video: ABC News: Cloned food approved
55
10.5 Genetically Modified Humans Genes can be transferred into a person’s cells to correct a genetic defect or treat a disease However, the outcome of altering a person’s genome remains unpredictable Gene therapy Transfer of a normal or modified gene into an individual with the goal of treating a genetic defect or disorder
56
Unpredictable Outcomes There are more than 15,000 serious genetic disorders – gene therapy is the only real cure In some cases, gene therapy works – in other cases it leads to death Inserting a virus-injected gene into a chromosome can disrupt normal function and cause cancer Severe allergic reaction to the viral vector can cause death
57
One Successful Case of Gene Therapy Rhys Evans, born with a severe immune disorder (SCID-X1) received a normal gene and no longer lives in isolation
58
Getting Perfect Eugenics Idea of deliberately improving the genetic qualities of the human race The potential benefits of genetically modifying humans must be weighed against the potential risks, including social implications
59
10.6 Impacts/Issues Revisited Golden rice with beta carotene was ready for distribution in 2005 but is still not available for human consumption – the biosafety experiments required are too expensive for the public humanitarian agency that developed it
60
Digging Into Data: Enhanced Spatial Learning in Mice With Autism Mutation
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.