Download presentation
Presentation is loading. Please wait.
1
Chapter 4-2 Chang Chi-Chung 2007.06.07
2
Bottom-Up Parsing LR methods (Left-to-right, Rightmost derivation) LR(0), SLR, Canonical LR = LR(1), LALR Other special cases: Shift-reduce parsing Operator-precedence parsing
3
Operator-Precedence Parsing Special case of shift-reduce parsing See textbook section 4.6
4
Bottom-Up Parsing E → T → T * F → T * id → F * id → id * id rightmost derivation reduction E → E + T | T T → T * F | F F → ( E ) | id
5
Handle Pruning Handle A handle is a substring of grammar symbols in a right-sentential form that matches a right-hand side of a production Right Sentential FormHandleReducing Production id 1 * id 2 id 1 F → id F * id 2 FT → F T * id 2 id 2 F → id T * F E → T * F E → E + T | T T → T * F | F F → ( E ) | id
6
Handle Pruning A rightmost derivation in reverse can be obtained by “handle pruning” S = γ 0 → rm γ 1 → rm γ 2 → rm …. → rm γ n-1 → rm γ n =ω Handle definition S →* rm αAω →* rm αβω S A α ω β A handle A →β in the parse tree for αβω
7
Example: Handle Handle Grammar S a A B e A A b c | b B d NOT a handle, because further reductions will fail (result is not a sentential form) a b b c d e a A b c d e a A A e … ? a b b c d e a A b c d e a A d e a A B e S
8
Shift-Reduce Parsing Shift-Reduce Parsing is a form of bottom-up parsing A stack holds grammar symbols An input buffer holds the rest of the string to parsed. Shift-Reduce parser action shift reduce accept error
9
Shift-Reduce Parsing Shift Shift the next input symbol onto the top of the stack. Reduce The right end of the string to be reduced must be at the top of the stack. Locate the left end of the string within the stack and decide with what nonterminal to replace the string. Accept Announce successful completion of parsing Error Discover a syntax error and call recovery routine
10
Shift-Reduce Parsing StackInputAction $id 1 * id 2 $shift $id 1 * id 2 $reduce by F → id $F* id 2 $reduce by T → F $T* id 2 $shift $T *id 2 $shift $T * id 2 $reduce by F → id $T * F$reduce by T → T * F $T$reduce by E → T $E$accept E → E + T | T T → T * F | F F → ( E ) | id
11
Example: Shift-Reduce Parsing Grammar: S a A B e A A b c | b B d Shift-reduce corresponds to a rightmost derivation: S rm a A B e rm a A d e rm a A b c d e rm a b b c d e Reducing a sentence: a b b c d e a A b c d e a A d e a A B e S S a b b c d e A A B A A B A A A These match production’s right-hand sides
12
Conflicts During Shift-Reduce Parsing Conflicts Type shift-reduce reduce-reduce Shift-reduce and reduce-reduce conflicts are caused by The limitations of the LR parsing method (even when the grammar is unambiguous) Ambiguity of the grammar
13
Shift-Reduce Conflict Stack $ $id $E $E+ $E+id $E+E $E+E* $E+E*id $E+E*E $E+E $E Input id+id*id$ +id*id$ +id*id$ id*id$ *id$ *id$ id$ $ $ $ $ Action shift reduce E id shift shift reduce E id shift (or reduce?) shift reduce E id reduce E E * E reduce E E + E accept Grammar E E + E E E * E E ( E ) E id Find handles to be reduced How to resolve conflicts?
14
Shift-Reduce Conflict Stack $… $…if E then S Input …$ else…$ Action … shift or reduce? Ambiguous grammar: S if E then S | if E then S else S | other Resolve in favor of shift, so else matches closest if Shift else to if E then S or Reduce if E then S
15
Reduce-Reduce Conflict Stack $ $a Input aa$ a$ Action shift reduce A a or B a ? Grammar C A B A a B a Resolve in favor of reduce A a, otherwise we’re stuck! 動彈不得
16
LR LR parser are table-driven Much like the nonrecursive LL parsers. The reasons of the using the LR parsing An LR-parsering method is the most general nonbacktracking shift-reduce parsing method known, yet it can be implemented as efficiently as other. LR parsers can be constructed to recognize virtually all programming-language constructs for which context-free grammars can be written. An LR parser can detect a syntactic error as soon as it is possible to do so on a left-to-right scan of the input. The class of grammars that can be parsed using LR methods is a proper superset of the class of grammars that can be parsed with predictive or LL methods.
17
LR(0) An LR parser makes shift-reduce decisions by maintaining states to keep track. An item of a grammar G is a production of G with a dot at some position of the body. Example A → X Y Z A → . X Y Z A → X . Y Z A → X Y . Z A → X Y Z . A → X . Y Z stacknext derivations with input strings items Note that production A has one item [A ]
18
LR(0) Canonical LR(0) Collection One collection of sets of LR(0) items Provide the basis for constructing a DFA that is used to make parsing decisions. LR(0) automation The canonical LR(0) collection for a grammar Augmented the grammar If G is a grammar with start symbol S, then G’ is the augmented grammar for G with new start symbol S’ and new production S’ → S Closure function Goto function
19
Use of the LR(0) Automaton
20
Function Closure If I is a set of items for a grammar G, then closure(I) is the set of items constructed from I. Create closure(I) by the two rules: add every item in I to closure(I) If A →α . B β is in closure(I) and B →γ is a production, then add the item B → . γ to closure(I). Apply this rule untill no more new items can be added to closure(I). Divide all the sets of items into two classes Kernel items initial item S’ → . S, and all items whose dots are not at the left end. Nonkernel items All items with their dots at the left end, except for S’ → . S
21
Example The grammar G E’ → E E → E + T | T T → T * F | F F → ( E ) | id Let I = { E’ → . E }, then closure(I) = { E’ → . E E → . E + T E → . T T → . T * F T → . F F → . ( E ) F → . id }
22
Exercise The grammar G E’ → E E → E + T | T T → T * F | F F → ( E ) | id Let I = { E → E + . T }
23
Function Goto Function Goto(I, X) I is a set of items X is a grammar symbol Goto(I, X) is defined to be the closure of the set of all items [ A α X ‧ β] such that [ A α ‧ Xβ] is in I. Goto function is used to define the transitions in the LR(0) automation for a grammar.
24
Example I = { E’ → E . E → E . + T } Goto (I, +) = { E → E + . T T → . T * F T → . F F → . ( E ) F → . id } The grammar G E’ → E E → E + T | T T → T * F | F F → ( E ) | id
25
Constructing the LR(0) Collection 1.The grammar is augmented with a new start symbol S ’ and production S’ S 2.Initially, set C = closure({[S’ S]}) (this is the start state of the DFA) 3.For each set of items I C and each grammar symbol X (N T) such that GOTO(I, X) C and goto(I, X) , add the set of items GOTO(I, X) to C 4.Repeat 3 until no more sets can be added to C
26
Example: The Parse of id * id Line STACK SYMBOLS INPUTACTION (1)0$id * id $shift to 5 (2)0 5$ id* id $reduce by F → id (3)0 3$ F* id $reduce by T → F (4)0 2$ T* id $shift to 7 (5)0 2 7$ T *id $shift to 5 (6)0 2 7 5$ T * id$reduce by F → id (7)0 2 7 10$ T * F$reduce by T → T * F (8)0 2$ T$reduce by E → T (9)0 1$ E$accept
27
Model of an LR Parser
28
Structure of the LR Parsing Table Parsing Table consists of two parts: A parsing-action function ACTION A goto function GOTO The Action function, Action[i, a ], have one of four forms: Shift j, where j is a state. The action taken by the parser shifts input a to the stack, but use state j to represent a. Reduce A→β. The action of the parser reduces β on the top of the stack to head A. Accept The parser accepts the input and finishes parsing. Error
29
Structure of the LR Parsing Table(1) The GOTO Function, GOTO[Ii, A], defined on sets of items. If GOTO[Ii, A] = Ij, then GOTO also maps a state i and a nonterminal A to state j.
30
LR-Parser Configurations Configuration ( = LR parser state): ($s 0 s 1 s 2 … s m, a i a i+1 … a n $) stackinput ($ X 1 X 2 … X m, a i a i+1 … a n $) If action[s m, a i ] = shift s then push s (a i ), and advance input (s 0 s 1 s 2 … s m, a i a i+1 … a n $) (s 0 s 1 s 2 … s m s, a i+1 … a n $) If action[s m, a i ] = reduce A and goto[s m-r, A] = s with r = | | then pop r symbols, and push s ( push A ) ( ( s 0 s 1 s 2 … s m, a i a i+1 … a n $) (s 0 s 1 s 2 … s m-r s, a i a i+1 … a n $) If action[s m, a i ] = accept then stop If action[s m, a i ] = error then attempt recovery
31
Example LR Parse Table Grammar: 1. E E + T 2. E T 3. T T * F 4. T F 5. F ( E ) 6. F id s5s4 s6acc r2s7r2 r4 s5s4 r6 s5s4 s5s4 s6s11 r1s7r1 r3 r5 id+*()$ 0 1 2 3 4 5 6 7 8 9 10 11 ETF 123 823 93 10 shift & goto 5 reduce by production #1 actiongoto state
32
LineSTACKSYMBOLSINPUTACTION (1)0id * id + id $shift 5 (2)0 5id* id + id $reduce 6 goto 3 (3)0 3F* id + id $reduce 4 goto 2 (4)0 2T* id + id $shift 7 (5)0 2 7T *id + id $shift 5 (6)0 2 7 5T * id+ id $reduce 6 goto 10 (7)0 2 7 10T * F+ id $reduce 3 goto 2 (8)0 2T+ id $reduce 2 goto 1 (9)0 1E+ id $shift 6 (10)0 1 6E + id $shift 5 (11)0 1 6 5E + id$reduce 6 goto 3 (12)0 1 6 3E + F$reduce 4 goto 9 (13)0 1 6 9E + T$reduce 1 goto 1 (14)0 1$ E$accept Grammar 0. S E 1. E E + T 2. E T 3. T T * F 4. T F 5. F ( E ) 6. F id Example
33
SLR Grammars SLR (Simple LR): a simple extension of LR(0) shift-reduce parsing SLR eliminates some conflicts by populating the parsing table with reductions A on symbols in FOLLOW(A) S E E id + E E id State I 0 : S E E id + E E id State I 2 : E id+ E E id goto(I 0,id)goto(I 3,+) FOLLOW(E)={$} thus reduce on $ Shift on +
34
SLR Parsing Table Reductions do not fill entire rows Otherwise the same as LR(0) s2 acc s3r3 s2 r2 id+$ 0 1 2 3 4 E 1 4 1. S E 2. E id + E 3. E id FOLLOW(E)={$} thus reduce on $ Shift on +
35
Constructing SLR Parsing Tables Augment the grammar with S’ S Construct the set C ={ I 0, I 1, …, I n } of LR(0) items State i is constructed from Ii If [ A a ] I i and goto(I i, a)=I j then set action[i, a]=shift j If [ A ] I i then set action[i,a]=reduce A for all a FOLLOW(A) (apply only if A S ’ ) If [ S’ S ] is in I i then set action[i,$]=accept If goto(I i, A)=I j then set goto[i, A]=j set goto table Repeat 3-4 until no more entries added The initial state i is the I i holding item [ S’ S ]
36
Example SLR Grammar and LR(0) Items Augmented grammar: 0. C’ C 1. C A B 2. A a 3. B a State I 0 : C’ C C A B A a State I 1 : C’ C State I 2 : C AB B a State I 3 : A a State I 4 : C A B State I 5 : B a goto(I 0,C) goto(I 0,a) goto(I 0,A) goto(I 2,a) goto(I 2,B) I 0 = closure({[C’ C]}) I 1 = goto(I 0,C) = closure({[C’ C]}) … start final
37
Example SLR Parsing Table s3 acc s5 r2 r1 r3 a$ 0 1 2 3 4 5 CAB 12 4 State I 0 : C’ C C A B A a State I 1 : C’ C State I 2 : C AB B a State I 3 : A a State I 4 : C A B State I 5 : B a 1 2 4 5 3 0 start a A C B a Grammar: 0. C’ C 1. C A B 2. A a 3. B a
38
SLR and Ambiguity Every SLR grammar is unambiguous, but not every unambiguous grammar is SLR, maybe LR(1) Consider for example the unambiguous grammar S L = R | R L * R | id R LFOLLOW(R) = {=, $} I 0 : S’ S S L=R S R L *R L id R L I 1 : S’ S I 2 : S L=R R L I 3 : S R I 4 : L *R R L L *R L id I 5 : L id I 6 : S L=R R L L *R L id I 7 : L *R I 8 : R L I 9 : S L=R action[2,=]=s6 action[2,=]=r5 no Has no SLR parsing table
39
LR(1) Grammars SLR too simple LR(1) parsing uses lookahead to avoid unnecessary conflicts in parsing table LR(1) item = LR(0) item + lookahead LR(0) item [A ] LR(1) item [A , a]
40
SLR Versus LR(1) Split the SLR states by adding LR(1) lookahead Unambiguous grammar S L = R | R L * R | id R L I 2 : S L=R R L action[2,=]=s6 Should not reduce, because no right-sentential form begins with R= split R LS L=R
41
LR(1) Items An LR(1) item [ A , a ] contains a lookahead terminal a, meaning already on top of the stack, expect to see a For items of the form [ A , a ] the lookahead a is used to reduce A only if the next input is a For items of the form [ A , a ] with the lookahead has no effect
42
The Closure Operation for LR(1) Items Start with closure(I) = I If [ A B , a ] closure(I) then for each production B in the grammar and each terminal b FIRST( a) add the item [ B , b ] to I if not already in I Repeat 2 until no new items can be added
43
The Goto Operation for LR(1) Items For each item [ A X , a ] I, add the set of items closure({[A X , a]}) to goto(I,X) if not already there Repeat step 1 until no more items can be added to goto(I,X)
44
Example Let I = { (S’ → S, $) } I 0 = closure(I) = { S’ → S, $ S → C C, $ C → c C, c/d C → d, c/d } goto(I 0, S) = closure( {S’ → S, $ } ) = {S’ → S, $ } = I 1 The grammar G S’ → S S → C C C → c C | d
45
Exercise Let I = { (S → C C, $) } I 2 = closure(I) = ? I 3 = goto(I 2, c) = ? The grammar G S’ → S S → C C C → c C | d
46
Construction of the sets of LR(1) Items Augment the grammar with a new start symbol S’ and production S’ S Initially, set C = closure({[S’ S, $]}) (this is the start state of the DFA) For each set of items I C and each grammar symbol X (N T) such that goto(I, X) C and goto(I, X) , add the set of items goto(I, X) to C Repeat 3 until no more sets can be added to C
47
LR(1) Automation
48
Construction of the Canonical LR(1) Parsing Tables Augment the grammar with S’ S Construct the set C={I 0,I 1,…,I n } of LR(1) items State i of the parser is constructed from I i If [ A a , b ] I i and goto(I i,a)=I j then set action[i,a]=shift j If [ A , a ] I i then set action[i,a]=reduce A (apply only if A S’ ) If [ S’ S, $ ] is in I i then set action[i,$]=accept If goto(I i,A)=I j then set goto[i,A]=j Repeat 3 until no more entries added The initial state i is the I i holding item [S ’ S,$]
49
Example The grammar G S’ → S S → C C C → c C | d state ACTIONGOTO cd$SC 0s3s412 1acc 2s6s75 3s3s48 4r3 5r1 6s6s79 7r3 8r2 9
50
Example Grammar and LR(1) Items Unambiguous LR(1) grammar: S L = R | R L * R | id R L Augment with S’ S LR(1) items (next slide)
51
[S’ S,$] goto(I 0,S)=I 1 [S L=R,$] goto(I 0,L)=I 2 [S R,$] goto(I 0,R)=I 3 [L *R,=/$] goto(I 0,*)=I 4 [L id,=/$] goto(I 0,id)=I 5 [R L,$] goto(I 0,L)=I 2 [S’ S,$] [S L=R,$] goto(I 0,=)=I 6 [R L,$] [S R,$] [L *R,=/$] goto(I 4,R)=I 7 [R L,=/$] goto(I 4,L)=I 8 [L *R,=/$] goto(I 4,*)=I 4 [L id,=/$] goto(I 4,id)=I 5 [L id,=/$] [S L=R,$] goto(I 6,R)=I 9 [R L,$] goto(I 6,L)=I 10 [L *R,$] goto(I 6,*)=I 11 [L id,$] goto(I 6,id)=I 12 [L *R,=/$] [R L,=/$] [S L=R,$] [R L,$] [L *R,$] goto(I 11,R)=I 13 [R L,$] goto(I 11,L)=I 10 [L *R,$] goto(I 11,*)=I 11 [L id,$] goto(I 11,id)=I 12 [L id,$] [L *R,$] I0:I0: I1:I1: I2:I2: I3:I3: I4:I4: I5:I5: I6:I6: I7:I7: I8:I8: I9:I9: I 10 : I 12 : I 11 : I 13 :
52
Example LR(1) Parsing Table s5s4 acc s6r6 r3 s5s4 r5 s12s11 r4 r6 r2 r6 s12s11 r5 r4 id*=$ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 SLR 123 87 104 13 Grammar: 1. S’ S 2. S L = R 3. S R 4. L * R 5. L id 6. R L
53
LALR(1) Grammars LR(1) parsing tables have many states LALR(1) parsing (Look-Ahead LR) combines LR(1) states to reduce table size Less powerful than LR(1) Will not introduce shift-reduce conflicts, because shifts do not use lookaheads May introduce reduce-reduce conflicts, but seldom do so for grammars of programming languages SLR and LALR tables for a grammar always have the same number of states, and less than LR(1) tables. Like C, SLR and LALR >100, LR(1) > 1000
54
Constructing LALR Parsing Tables Two ways Construction of the LALR parsing table from the sets of LR(1) items. Union the states Requires much space and time Construction of the LALR parsing table from the sets of LR(0) items Efficient Use in practice.
55
Example state ACTIONGOTO cd$SC 0s36s4712 1acc 2s36s475 36s36s4789 47r3 5r1 89r2 state ACTIONGOTO cd$SC 0s3s412 1acc 2s6s75 3s3s48 4r3 5r1 6s6s79 7r3 8r2 9 LALR(1) LR(1)
56
Constructing LALR(1) Parsing Tables Construct sets of LR(1) items Combine LR(1) sets with sets of items that share the same first part [L *R,=] [R L,=] [L *R,=] [L id,=] [L *R,$] [R L,$] [L *R,$] [L id,$] I4:I4: I 11 : [L *R,=/$] [R L,=/$] [L *R,=/$] [L id,=/$] Shorthand for two items in the same set
57
Example LALR(1) Grammar Unambiguous LR(1) grammar: S L = R | R L * R | id R L Augment with S’ S LALR(1) items (next slide)
58
[S’ S,$] goto(I 0,S)=I 1 [S L=R,$] goto(I 0,L)=I 2 [S R,$] goto(I 0,R)=I 3 [L *R,=/$] goto(I 0,*)=I 4 [L id,=/$] goto(I 0,id)=I 5 [R L,$] goto(I 0,L)=I 2 [S’ S,$] [S L=R,$] goto(I 0,=)=I 6 [R L,$] [S R,$] [L *R,=/$] goto(I 4,R)=I 7 [R L,=/$] goto(I 4,L)=I 9 [L *R,=/$] goto(I 4,*)=I 4 [L id,=/$] goto(I 4,id)=I 5 [L id,=/$] [S L=R,$] goto(I 6,R)=I 8 [R L,$] goto(I 6,L)=I 9 [L *R,$] goto(I 6,*)=I 4 [L id,$] goto(I 6,id)=I 5 [L *R,=/$] [S L=R,$] [R L,=/$] I0:I0: I1:I1: I2:I2: I3:I3: I4:I4: I5:I5: I6:I6: I7:I7: I8:I8: I9:I9: Shorthand for two items [R L,=] [R L,$]
59
Example LALR(1) Parsing Table s5s4 acc s6r6 r3 s5s4 r5 s5s4 r4 r2 r6 id*=$ 0 1 2 3 4 5 6 7 8 9 SLR 123 97 98 Grammar: 1. S’ S 2. S L = R 3. S R 4. L * R 5. L id 6. R L
60
LL, SLR, LR, LALR Summary LL parse tables computed using FIRST/FOLLOW Nonterminals terminals productions Computed using FIRST/FOLLOW LR parsing tables computed using closure/goto LR states terminals shift/reduce actions LR states nonterminals goto state transitions A grammar is LL(1) if its LL(1) parse table has no conflicts SLR if its SLR parse table has no conflicts LR(1) if its LR(1) parse table has no conflicts LALR(1) if its LALR(1) parse table has no conflicts
61
LL, SLR, LR, LALR Grammars LL(1) LR(1) LR(0) SLR LALR(1)
62
YACC Yacc or Bison compiler yacc specification yacc.y y.tab.c input stream C compiler a.out output stream y.tab.c a.out
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.