Download presentation
Presentation is loading. Please wait.
1
E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP 1 RADIATION IN POROUS MEDIA: AN UPSCALING METHODOLOGY APPLIED TO A REACTOR NUCLEAR CORE Estelle Iacona, Jean Taine and Fabien Bellet Energétique Moléculaire et Macroscopique, Combustion E.M2.C Ecole Centrale Paris - UPR 288, CNRS
2
E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP 2 AXES DE RECHERCHE EM2C COMBUSTION 8 ECP Candel S. Darabiha N. Fiorina B. Gicquel O. Massot M Rolon J.C Richecoeur F. Schuller Th. 4 CNRS Ducruix S. Laurent-Nègre F. Veynante D. Zimmer L. IR CNRS : Durox D. Lacoste D. Scouflaire Ph. NANO-OPTIQUE ET NANO-THERMIQUE NANO-OPTIQUE ET NANO-THERMIQUE 3 ECP1 CNRS Greffet J.-J. Volz S. Laroche M. Marquier F. PLASMAS HORS ÉQUILIBRE PLASMAS HORS ÉQUILIBRE 1 ECP1 CNRS Laux Ch.Bourdon A. IR CNRS : Lacoste D. RAYONNEMENT ET TRANSFERTS COUPLÉS RAYONNEMENT ET TRANSFERTS COUPLÉS 4 ECP3 CNRS Taine J. Perrin M.Y. Bellet F. Rivière Ph. Goyeau B.Soufiani A. Iacona E.
3
E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP 3 Carbon foam (porosity 0.93) for some fuel cells (SOFC) Mullite foam (porosity 0.85) for catalytic combustion Some applications of radiation in porous media Combustible grape for nuclear reactor core - AREVA
4
E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP 4 Outline Objectives Up scaling method : a direct identification method Application to real porous media
5
Problem : Temperature field in the medium? Coupled heat transfer : - convection in pores (fluid phase) - conduction in the fluid and in the solid phases - radiation : Accurate calculations required in many applications high temperature applications Local scale transfer : unaffordable (Large computer time and memory) dz
6
Problem Alternative : up scaling method model of an equivalent semi transparent continuous medium ` => Radiative properties ? Validity? Medium structure statistically known Local radiative properties known dz extinction coefficient : albédo (diffusion) : Diffusion phase function : Diffusion Absorption Extinction +
7
E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP 7 parameter identification method : some drawbacks assumed semi transparent medium model (no validity criterion) indirect method of characterization (radiative transfer model required to analyze experiments) accuracy on the determined radiative properties difficult to estimate error associated with the semi transparent model ? accuracy of the radiative transfer model ? accuracy of the identification technique ?
8
E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP 8 Outline Objectives Up scaling method : a direct identification method Application to real porous media
9
E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP 9 Objectives From the statistical knowledge of the porous medium structure and its local radiative properties: calculate the radiative properties of a potentially equivalent semi-transparent medium : - nonisotropic extinction coefficient - nonisotropic absorption coefficient - scattering phase function p with a direct simulation using a Monte-Carlo method.
10
E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP 10 Definitions and assumptions Porous medium statistically isotropic or anisotropic Porous medium statistically homogeneous or nonhomogeneous Diffraction : neglected ( <<D) Solid phase : opaque or semi transparent Fluid phase : transparent or semi transparent
11
E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP 11 Definition : Extinction =absorption+scattering At local scale: probability of reaching the interface (non spectral, only geometric property) Statistical approach of radiation u r I s0s0 (semi-transparent medium) linked to the cumulated distribution function of chord lengths
12
E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP 12 Monte-Carlo method Typically 10 9 ramdom rays any ray : 1 random original point r into the fluid phase 1 random direction impact at the solid interface Calculation of the extinction distance : s 0 =rI Calculation of : the normal vector the impact angle at the solid interface Deduction of the scattering angle : contribution to the phase function u r I n
13
E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP 13 Identification criterion e : Statistical approach of radiation Radiation Distribution Function Identification Method (RDFI method) g e (s,u k ) G e (s,u k ) s (mm) 0.95 useful extinction optical thickness range s = 0 s = 3 Extinction coefficients calculated from identification of G e (s) with g e (s) with mean square method
14
E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP 14 Outline Objectives Up scaling method : a direct identification method Application to real porous media
15
E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP 15 IUSTI from ESRF X ray tomography spatial resolution of 5 m 3D Numerical image of a mullite foam sample issued from a tomography Tomography resolution mid scale (wall pores) Local scale S mm -1 and S mm - 1, p S
16
E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP 16 IRNS : French Radiation and nuclear safety institute Cooling fluid leaking Increase of temperature Degradation, fusion et geometrical modification of the core T<500K Nuclear reactor core in severe accident conditions
17
E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP 17 2D of a cross section ( density scale in g/cm 3 ) Degraded small scale nuclear core rod bundle Geometry obtained from ray tomography experiment FPT1, IRSN, Cadarache 3D reconstruction
18
E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP 18 Numerical image of the whole degraded bundle Walls assumed opaque at local scale : = 0.8 (Chalopin et al., 2008) z Degraded small scale nuclear core rod bundle Geometry obtained from ray tomography experiment FPT1, IRSN, Cadarache
19
E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP 19 A: =0.19 D: =0.24 Bain fondu + cavité C: =a x ɛ +b B: =0.28
20
E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP 20 Radiative transfer in a nuclear reactor core Calculated from the obtained radiative properties of the equivalent medium Radiative conductivity model : < 0. 2 For an optically thick REV from the absorption point of view
21
E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP 21 conclusions General statistical approach of radiation : Accurate determination of G e, P a, P s and p for any porous medium REV Equivalent semi-transparent media : and p by the Radiative Distribution Function Identification (RDFI) method Validity of the semi transparent medium model : all porous media can ’ t be modeled by semi transparent media Direct determination method radiative properties directly obtained from their definitions, without use of a radiative transfer model based on the knowledge of - the porous medium morphology (tomography) - the radiative properties at the local scale (less than the spatial tomography resolution)
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.