Presentation is loading. Please wait.

Presentation is loading. Please wait.

José Antonio Oller Universidad de Murcia. Spain. In collaboration with L. Roca (Murcia), C. Schat (Murcia; CONICET and U.Buenos Aires, Argentina) TexPoint.

Similar presentations


Presentation on theme: "José Antonio Oller Universidad de Murcia. Spain. In collaboration with L. Roca (Murcia), C. Schat (Murcia; CONICET and U.Buenos Aires, Argentina) TexPoint."— Presentation transcript:

1 José Antonio Oller Universidad de Murcia. Spain. In collaboration with L. Roca (Murcia), C. Schat (Murcia; CONICET and U.Buenos Aires, Argentina) TexPoint fonts used in EMF: A AA A AA A A A AA A AA A AA A AA 1.Scalar radius of the pion. Introduction. 2.Dispersion relation. Omnès representation. Watson’s final state theorem. 3.Ynduráin’s approach. 4.Extended method. 5.Results. Conclusions I. 6.. Introduction. 7.Dispersive Approach. 8.. 9.Conclusions II.

2 1. Introducion The non-strange I=0 pion scalar form factor:

3

4 Consequences in the scattering lengths of CGL Yall :75 ± 0:07fm 2 \robust"lowerbound: h r 2 i ¼ s =0:70 ± 0:06fm 2

5

6 2. Disperson Relations The pion non-strange scalar form factor

7 For the scalar form factor F(z) vanishes as 1/z because of QCD. (Brodsky-Farrar counting rules). Hard gluon 1/t t π π

8 One must first remove the zeroes (also the poles for the general case, not in the present one) of F(t) and consider the function

9

10 Corolary:

11 3. Ynduráin’s method Weak point of the argument Not always compatible

12

13 From F.J.Ynduráin, PLB578,99(2004)

14 This approach was critized by Ananthanarayan, Caprini, Leutwyler, IJMP A21,954 (2006) (ACGL).

15 4. Extended Y’s method L. Roca and J.A.O. Phys. Lett. B651,139(2007) arXiv:0704.0039 [hep-ph]

16

17 degrees 180 360

18

19

20 5. Numerical Analysis

21

22

23

24

25

26

27

28

29 Explodes at around 1 GeV

30

31

32

33

34

35

36

37

38

39

40

41

42 No axial vector exchanges

43

44

45

46

47

48 6. Multipion states Extremely small

49

50

51

52

53

54

55

56

57 One has then two channels diagonalized that are elastic

58

59 two loops


Download ppt "José Antonio Oller Universidad de Murcia. Spain. In collaboration with L. Roca (Murcia), C. Schat (Murcia; CONICET and U.Buenos Aires, Argentina) TexPoint."

Similar presentations


Ads by Google